

Lessons from a fatal explosion in a pilot plant

EPSC 16th & 17th December 2025 Aachen S. EGAN

DANGERS OF THE CHEMICAL INDUSTRY

Contents

- History
- US Patent 3,081,345
- Chemistry
- Pilot plant reactor
- Accident of 17th June 1966

16/12/2025

- Hypotheses
- Follow up
- Identifying potentially sensitive materials
- Prevention of deflagration and detonation
- Summary

History

- 1963 US Patent 3,081,345: Propylene + liquid $NO_2 \rightarrow Oxalic$ acid
- 1963 Rhône-Poulenc starts lab. work to make oxalic & lactic acids
- 1966 Rhône-Poulenc plans oxalic (15 kt/yr) & lactic acid (5 kt/yr) plant
- 1966 Explosion of small pilot installation kills 6 people
- 1972 RP builds oxalic (15 kt/yr) & lactic acid (5 kt/yr) plant at Chalampé
- 1974 Explosion during start-up kills 1 person
- 1975 Plant is started up but only to produce oxalic acid
- 1990 Everybody is aware of the 1966 accident and how to avoid such accidents
- 1995 I start work in Chalampé
- 1997 The oxalic acid plant is shut down
- 1997 I send my safety file to the archives at Besançon
- Nobody is aware of the 1966 accident or how to avoid such accidents
- 2015 I get my oxalic acid safety file back from the archives

US Patent 3,081,345

- Production of oxalic acid:
 - "Particularly outstanding results have been obtained at a ratio of about 4 to 5 mole of NO₂ per mole of propylene".
 - "97 parts of liquid NO₂ were placed in a reactor equipped with a stirrer and a Dry-Ice bath, and 21 parts of propylene were introduced thereto over a 66 minute period at a uniform rate with stirring and cooling to a temperature of 10 °C to 12 °C".

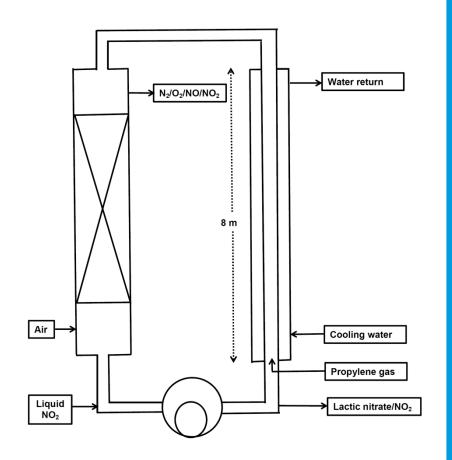
Chemistry

First reaction (common to oxalic and lactic acid)

ONO₂

Oxidation (catalyzed) of intermediate gives oxalic acid

ONO₂


$$CO_2H$$

 $I + 2H_2O + CO_2 + 2 NO_2$
 CO_2H

Oxidation of intermediate gives lactic acid

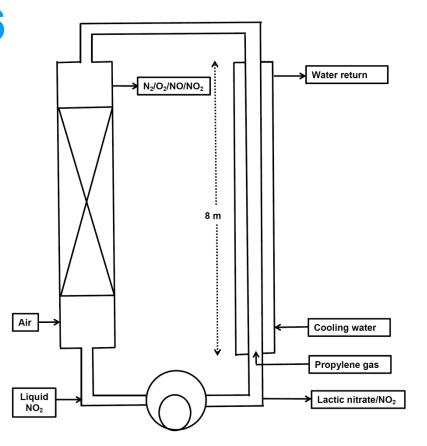
Pilot plant reactor

- Tubular reactor:
 - 8 m long X 6 mm diameter
 - Volume 250 cm³
 - Input of propylene gas
 - Water cooled
 - Samson liquid ring pump


- Packed column:
 - Oxidation of NO to NO₂
 - Degassing section at top

Pilot plant reactor

- Conditions:
 - 30 °C
 - 2.5 bar gauge
 - 1.5 cm/s
- Feeds:
 - 270 g/h C_3H_6 1.0 mole
 - 1330 g/h NO₂ 4.5 mole
- Output:
 - 400 g/h Lactic acid


Accident of 17/06/1966

Time-line

- 0.00 First start-up of pilot plant with six people present
- 5.00 Stuffing box gland of liquid ring pump is tightened
- 5.15 Reactor explodes

Results

- Plant is devastated
- No survivors

Hypotheses

- 1. Hotspot in pump leads to decomposition
 - Reconstruction 200 °C on tightening gland of pump

2. Loss of control of temperature leads to decomposition

CH₃—CH=CH₂ + 2 NO₂

$$\begin{array}{c}
\text{ONO}_2 \\
| \\
\text{So °C / 2 bar gauge} \\
\hline
\text{Iiquid NO}_2
\end{array}$$
CH₃—CH—CH₂—NO

- Heat of reaction = 2500 kcal/kg propylene
- ΔT_{adiabatic} = 582 °C with 4.5 moles NO₂/mole propylene

Follow-up

- Process development:
 - Continued despite the accident
 - Same basic chemistry
 - Solvent changed to H₂O/HNO₃/NO₂
- Full scale plant:
 - Plans were ready by 1969
 - Start-up 1974
 - Explosion of lactic acid intermediate storage vessel one person killed
 - Two other serious incidents involving pumps
 - Definitive shut-down in 1997

Identifying potentially sensitive materials

Check for unstable groupings

N°	Name	Chemical formula	
1	Peroxide ; Ozonide	-0-0-; -0-0-	
2	Chlorate ; Perchlorate	-OCIO ₂ ; -OCIO ₃	
3	Nitro ; Nitrate ; Nitroso ; Nitrite	$-NO_2$; $=N-NO_2$; $-ONO_2$; $-N=O$; $-ON=O$	
4	Fulminate ; Cyanate	-O-N≡C ; -C≡N	
5	Haloamine ; Chloramine	=NX; =NCI	
6	Azo ; Diazo ; Diazonium ; Azide	-N=N-;-N≡N or =N=N;-N=N;-N=N=N	
7	Acetylide	-C≡C-	
8	Heavy metal linked to carbon	−CM with M = Pb, Hg, Tl	

16/12/2025

Identifying potentially sensitive materials

Calculate the four CHETAH indices

Index	Definition	High	Medium	Low	Units
1	ΔH_d	> 700	300 to 700	< 300	cal/g
2	ΔH _C - ΔH _d	< 3000	3000 to 5000	> 5000	cal/g
3	O ₂ balance	-120 to +80	-240 to -120 +80 to +160	< -240 > +160	g O ₂ / 100 g
4	ΔH _d ² M N	> 110	30 to 110	< 30	kcal ² /gmol.g

- Key:
 - Oxygen balance $C_xH_vO_z = 1600.(2x+y/2-z)/M$
 - M = Molecular weight
 - N = Number of atoms in the molecule

Identifying potentially sensitive materials

Accident of 17/06/1966:

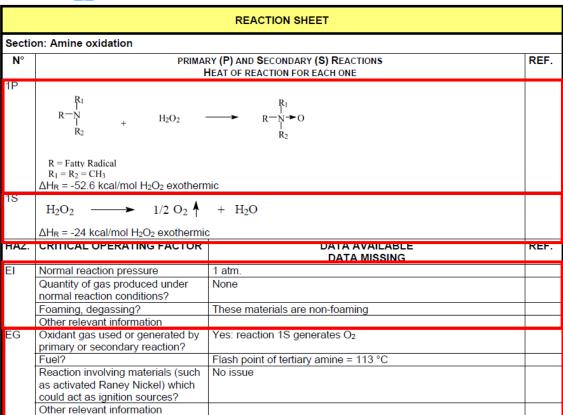
16/12/2025

The reaction we wanted to carry out was:

$$CH_3-CH=CH_2 + 2 NO_2 \qquad \qquad \begin{array}{c} 30 \text{ °C } / \text{ 2 bar gauge} \\ \hline \text{liquid NO}_2 \end{array} \longrightarrow CH_3-CH-CH_2-NO$$

- US Patent 3,081,345: "Particularly outstanding results have been obtained at ratio of about 4 to 5 mole of NO₂ per mole of propylene".
- A mole ratio of 4.5 is exactly the worst case

ONO₂


1990:

- Reaction sheets written for new reactions
- Included Maximum Potential Energy (MPE = CHETAH index 1)
- Everbody knew why
- Everbody calculated Maximum Potential Energy

2017:

- Guideline IND-HSE-PTS-11.32 "Basic data on products and reactions"
- Appendix 4 = Reaction Sheet
- Includes Maximum Potential Energy (CHETAH index 1)
- Nobody knows why
- Nobody calculates Maximum Potential Energy any more

- Reaction sheet
 - Primary reactions
 - Secondary reactions
 - EI Explosion Implosion
 - EG Gas Explosion

- Reaction sheet
 - ET Thermal explosion
 - D Condensed phase Detonation

	REACTION SHEET						
HAZ.	CRITICAL OPERATING FACTOR	DATA AVAILABLE DATA MISSING	REF.				
ET	\[\Delta T_{Ad.} = Adiabatic temperature rise for complete batchwise reaction \] Maximum accumulation expected under normal reaction conditions.	50 °C No issue					
ı	Maximum Temperature of Synthesis Reaction (MTSR)	75 °C					
	Thermal stability of reaction mixture at MTSR	The reaction mixture is known to be thermally stable at the mixture boiling point of 105 °C.					
D	Does any of the primary or secondary reaction use or produce compounds with unstable groupings? MPE of such compounds	Yes: H ₂ O ₂ 743 cal/g (high potential) for 100 % H ₂ O ₂ 372 cal/g (medium potential) for 50 % H ₂ O ₂					
	Does the reaction involve fuel/oxidant as condensed phases? MPE Normal reaction mixture MPE Worst case reaction mixture	Yes: Fuel = tertiary amine Oxidant = 50 % H ₂ O ₂ -202 cal/g (low potential) -1019 cal/g (high potential) for mixture with no initial water charge and low charge of amine					
	Other relevant information	The worst case mixture is known to be sensitive to shock.					

Summary

- Accident of 17/06/1966
 - 250 cm³ tubular continuous reactor
 - The normal reaction mixture was a more powerful explosive than TNT
 - The reactor exploded on the first trial
 - 6 people died

Prevention

- Use the reaction sheet form for new processes
- Look for unstable groupings e.g. –ONO₂
- Look for fuel / oxidant mixtures
- Calculate the Maximum Potential Energy