EPSC Conference on Plant & Process Safety

Process Safety Requirements for Electrolysis

Oliver Grosse/ Linde, Engineering Division Barcelona, 02 & 03.12.2024

Think Hydrogen. Think Linde. LINDE **HYDROGEN**

Speaker CV: Oliver Grosse, Linde GmbH, Engineering Division

I joined Linde in 1994 and has held various Project Execution and Line Management positions including Process Safety Lead, Engineering Manager, Departmentand Section Management with local and global responsibilities.

Presently I serve as Associated Director Engineering of Linde Engineering Pullach, Germany and serves for various technology driven development initiatives.

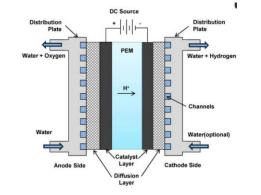
I represent Linde in ISO, DIN, CSE (Center of Safety Excellence) and EPSC (Europe Process Safety Centre).

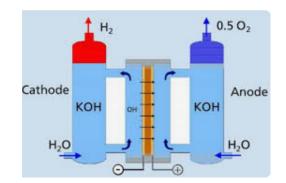
Oliver is a Chartered Process Engineer and a graduate of the "Otto von Guericke" University of Magdeburg, Germany.

Tasks/ Responsibilities: Global Engineering Interface Coordination Project Management Special Projects Product Safety Hydrogen and Oxygen Processes and Plants

Business Background – Water Electrolysis

Introduction


- Green Hydrogen production rapidly increase.
- Proton membrane exchange (PEM) and Alkaline (AEL) electrolysers are main technologies.
- Both known and new OEM's offer their electrolyser technology.
- Considerable safety risks exist e.g., as, H2 and O2 are only separated by a membrane.
- Safety design of electrolysers is determined solely by the OEM.


PEM and Alkaline Technology

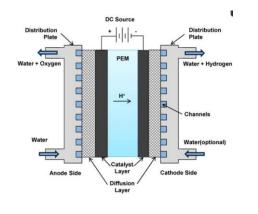
Safety of Hydrogen Electrolyzers depends on

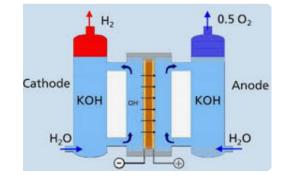
- Elextrolyzer technology itself
- Scale in terms of dimensions, production rate and facility siting
- Safety Standards
- Operational & Maintenance

Proton Exchange Membrane (PEM)

Alkaline

Container- Plant


Industrial Scale


PEM and Alkaline Technology

Stack Design & Membrane/ Diaphragma Sensitivity

- Pressure
- Pressure Swing
- Temperature
- Hot Spots
- Current Density
- Degradation
- Water-/ Alkaline Quality

PEM

Alkaline

Process Safety Considerations

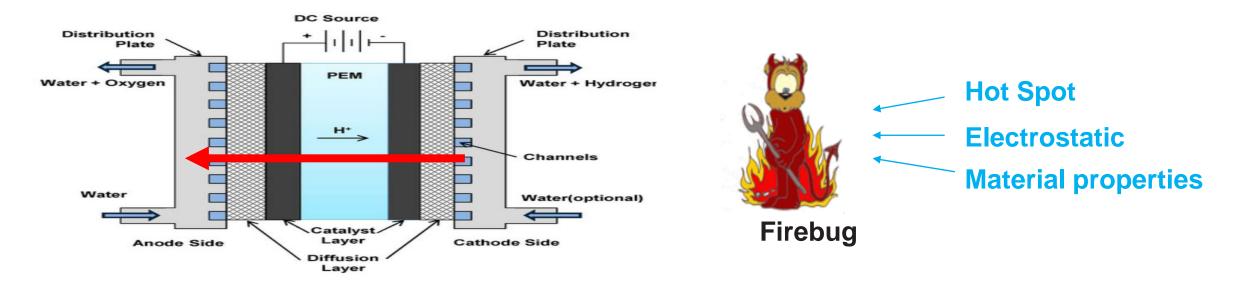
Process Safety Considerations downstream stack

Process upset conditions (P/T/L)
Hydrogen service (volatility, permeability etc.)
Ignition Sources (electrostatic etc.)
Explosion and Fire Risk and Impact
Oxygen and Hydrogen service requirements

Process Safety Considerations

PEM vs. Alkaline

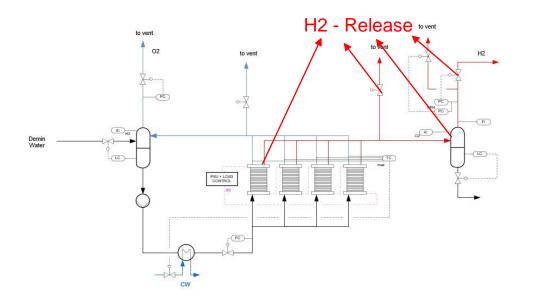
PEM	Alkaline
New technology.	Well proven technology.
Operational experience limited.	Operational experience available.
2-phase in cell partitions (valid for most PEM's).	Cells are flooded.
Risk of hot spots.	Temperature changes are moderate.
Difference pressures across separators.	Same pressure on both separators.
Spontaneous formation of an ignitible mixtures cannot be ruled out as a standard.	Safeguards allows prevention of spontaneous ignitable mixtures.
Other measures, such as pressure-resistant design may be necessary.	Innovations in stack design could also affect safety.


Example: Crack Sensitivity of Membrane

Operational Condition and Failure Scenario

- H2/water separator is operated at approx. 20,0 bara
- O2/water separator is operated at approx. 1,0 bara
- Scenario: Spontaneous membrane failure due to e.g., aging, mechanical stress or faulty operation

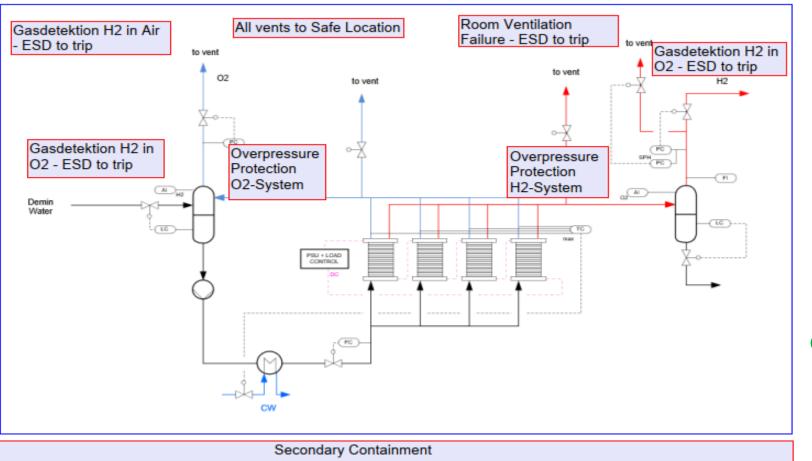
Challenge: Damage mechanism, leak propagation, leakage rate and consequences




Example: H2 Release to ELY- Machinery Building

Operational Condition and Failure Scenario

- ELY- Stack Cathode Side at approx. 20,0 bara
- H2/water separator is operated at approx. 20,0 bara
- Scenario: Leakage due to e.g., mechanical- or thermal stress, faulty operation or fatigue



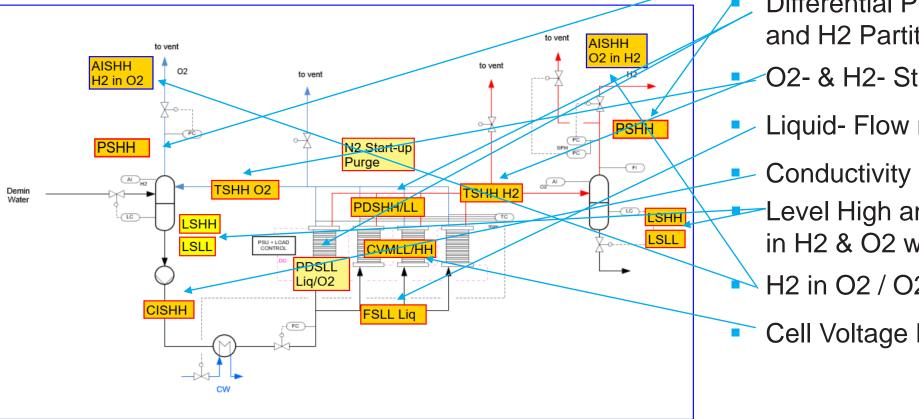
Challenge: Leakage rate, Detector Selection- & Allocation, ESD Functions and Ventilation Design

General Safeguarding - Process- and Plant Safety

Linde

ISO 22734: Hydrogen Generator using Water Electrolysis

ISO requires safety functions based on risk analysis


- Stop H2 Generation
- Depressurization
- De-energization
- Ventilation to maximum

Applicable Codes currently define only general requirements and do not stipulate specific safeguarding systems!

Process Safety - Safeguarding

Set of Process Safeguards

The safety features for electrolyzers are multi-faceted and depend on the OEM's design solutions!

-1	Pressure High in O2 and H2 partition
	Differential Pressure H/L over O2
	and H2 Partition of ELY- System
-	O2- & H2- Stack Outlet temperature
-	Liquid- Flow measurement
	Conductivity measurement (CIS)
	Conductivity measurement (CIS) Level High and Low
	Level High and Low

Areas for Standardisation

Торіс	Description
EX	Explosion Protection
	Facility Siting and Safety Distances
	Building Installation Requirements
	H2/O2/Liquid - Crossover Impact on Design
	O2/H2 - Compatibility

Technology

- PEM currently being introduced an industrial scale but is still under development.
- Alkaline is a proven technology, but innovations in stack design could also affect safety.
- If proven safety philosophies are considered both technologies can be seen as safe.

Designer/ OEMs/ Operators

- Lack of adequate definition of safety requirements.
- OEMs differ in terms of engineering and manufacturing maturity.
- Steep learning curve because of technology development and scale-up.
- New operators with limited knowledge of hydrogen and oxygen hazards.

- The development of uniform and detailed safety standards is a challenge but is required.
- Exchange of information on the technical safety practices is important.
- EPSC can help to bring stakeholders together.
- EPSC can drive safety design initiatives.
- EPSC can support in exchange of lesson learned from operation.

EPSC Conference on Plant & Process Safety

Linde Engineering Oliver Grosse oliver.grosse@linde.com www.linde.com

Making our world more productive.

