

Progress beyond

Hazards of Hydrogen Peroxide handling

Gilles ROMAN, Corp. HSE / Process Safety EPSC conference - Maastricht Dec 13th & 14th, 2023

Content

- Hydrogen Peroxide properties
- Influence of Hydrogen Peroxide on Fire & Explosion Hazards
 - Gas-phase explosion
 - Thermal runaway
 - Condensed-phase explosion
- Real-life experiences
 - Gas-phase explosions: 3 events
 - Thermal runaway: 3 events
 - Condensed-phase explosion: 1 event

• Lessons learned

1. Hydrogen Peroxide properties

Hazards of Hydrogen Peroxide handling, EPSC, Maastricht, Dec. 2023

page 3

Properties of Hydrogen Peroxide (HP)

• A common and versatile chemical compound

- A reactive oxygen species
- Clean byproducts: water and oxygen
- Main uses at low concentration: oxidizing, bleaching, disinfectant.
- Grades up to 70% are used in the chemical industry
- ... higher grades used as rocket propellant -out of today's scope.

Labelling

- Grades ≥50%
- Grades < 50% to ≥22%

2. Impact of Hydrogen Peroxide on Fire and Explosion Hazards

Gas-phase Explosion Hazard

Ternary diagram presentation (% vol)

- Lower Flammability Limit in air
- Upper Flammability Limit in air
- Limiting Oxygen Concentration
- Stoïchiometric combustion line

• In presence of Hydrogen Peroxide

- H₂O₂ in gas phase usually negligible
- Generation of O₂ may exceed LOC
- For [O₂] >> 21%
 - UFL increases
 - Minimum Ignition Energy drops
 - Explosion pressure Pmax increases
 - Deflagration to Detonation Transition more likely

Reaction Runaway Hazard

Classical approach: Gygax/Stoessel

- Loss of cooling scenario
- Runaway of desired reaction by accumulation of unreacted reagents
- Triggers the secondary reaction
- Stoessel: process criticality classes

• In presence of Hydrogen Peroxide

- Side reaction: $H_2O_2 => H_2O + \frac{1}{2}O_2$
- Catalyzed by alkalis, metals, salts, etc...
- Any HP accumulation scenario can trigger the side reaction & overpressure
- Obviously a gassy reaction:
 => Two-phase venting likely...

SOLVA

Condensed-Phase Explosion Hazard

Ternary diagram presentation (% mass)

- Generic diagram for an organic miscible in HP solutions
- Illustrate decomposition energy and trials with high initiation energy (falhammer, detonation tube...)
- Decomposition Energy limits:
 - Deflagration > 450 cal/g
 - Detonation > 900 cal/g
- Zone boundaries depend on the chemical
- Some special cases eg methanol: slowly transforms into performic acid
- Maximum concentration to avoid explosive mixtures: ~35%.

Let's see what happens in real life

• Statistics on Solvay's internal Lessons Learned Bulletins

- Process Safety Bulletins issued monthly to raise awareness
- "Making the headlines" involves subjectivity
- However HP is involved in 15 out of the 206 bulletins

• Selected events taken from these Lessons Learned Bulletins

- Vast majority occurred at HP users sites
- HP users represent >95% of Solvay's workforce

3. Accidents Gas-Phase Explosions

SOLVA

Event #1 - Manufacturing facility, France, 2015

• Unit description

• Complex vent header system collecting vents from 23 different equipments

SOLVAY

• Off-gases are sent either to a scrubber, or to an oxidizer

• The process carried out in one of the reactors that day

- Heating applied to vaporize traces of dichloromethane
- Feeding HP 35% over 10 hours
- Adding KOH solution to decompose the excess HP

Sequence of events

 The oxidizer was in maintenance during the first two steps: off-gases sent to the scrubber

Event #1 - Manufacturing facility, France, 2015

The mixture was ignited at the oxidizer

SOLVA

The accident

- Explosion in the vent pipe from the oxidizer to a glass seal pot
- Shrapnels were sent dozens of meters away
- One temporary hearing loss, no damages to the environment

The causes

- Dichloromethane condensed in the vent pipe low points
- Dichloromethane is not classified "flammable liquid", but vapors are flammable!
- Oxygen from HP decomposition generated a flammable gas mixture in the vent header

Event #2 - Research facility, Belgium, 2017

• The research field

- Hydrocarbon oxidation with O₂ and H₂O₂
- Reactor: 0.25 liter, MAWP 200 bar, located in a bunker
- Temperature 90°C, different pressures, DoE on compositions (~250 trials)

SOLV

The process for each trial

- Loading 75 g hydrocarbon, solvent and catalyst in the reactor
- Pressurize to 30 bar with nitrogen
- Start agitation and heat to 90°C
- Co-injection of O_2 and H_2O_2 in quantities according to test plan

Safety assessment

- Process temperature is above the mixture's flash point
- Keep O_2 below the Limiting Oxygen Concentration = 7% vol.

- Flexible pipe shattered (detonation)
- One hearing injury, no damage to the environment.

The causes

- Constraint to keep O_2 concentration below the I OC was misunderstood
- Ignition source during trial at highest $[O_2]$
- SOP not followed: operator in the bunker

Event #2 - Research facility, Belgium, 2017

The accident

- Poor yields observed when $O_2/(O_2+N_2) < 7\%$
- O_2 quantities were increased gradually
- Explosion occurred during test where $[O_2] = 52\%$.

Event #3 - Manufacturing facility, France, 2022

• The process

- Processing a natural raw material
- Solubilized in a flammable solvent
- Addition of hydrogen peroxide 35%
- Addition of caustic soda
- "Cooking" step

Sequence of events

- Various recipes of this process operated since decades without accidents
- Development of a new recipe at laboratory and pilot scale
- Transfer of the new recipe at the Plant: explosion during the first batch!

There was no N₂ sweep at this Plant

•

page 16

Event #3 - Manufacturing facility, France, 2022

The accident

- Process carried out exactly as intended
- Explosion in the reactor and fire
- Rupture of glass seal pot on the vent line
- No injuries and no damages to the environment

The causes

- O_2 generation by side reaction known to experts
 - Not quantified
 - Not communicated to Plant & Hazop teams
- The new recipe implied 20 times more HP

4. Accidents Thermal Runaway

SOLVA

page 18

Event #4 - Manufacturing facility, USA - 2023

Process description

- HP 30% is fed to a reactor from drums
- Pump & pipe previously used to load ethanol

• The accident

- The partial HP drum heated-up and bulged
- The drum tilted over and burst
- Nobody was injured and the spill was contained

• The cause

- Contamination of HP initiated its decomposition
- Either dirty suction cane, or liquid backflow

• Some basic rules not respected

- Suction cane not rinsed thoroughly with water
- Drum's breathing vent replaced by standard cap

Event #5 - Manufacturing facility, China - 2022

SOLVA

Process description

- HP 35% is fed to a reactor from drums
- Use of a PTFE-coated diaphragm pump
- After feeding HP, the pump & pipe are rinsed by pumping an organic solvent to the reactor

Event #5 - Manufacturing facility, China - 2022

• The accident

- Transfer of 20 kg HP to the reactor
- Pump & pipe are rinsed with solvent
- 10 minutes after flushing, the pump burst
- Fragments send few meters away
- Nobody was injured and the spill was contained

The causes

page 20

- Damaged PTFE membrane put HP in contact with rust: decomposition to O_2 and H_2O
- Lack of venting provision on piping & pump
- Several basics not respected
 - Pump & pipe not dedicated to HP / Not rinsed
 - Coatings on incompatible materials to be avoided

Event #6 - Manufacturing facility, Germany - 2018

• Process description

- Semi-batch process
- Raw materials are loaded in the reactor and cooled to 20°C - 25°C
- Catalyst (CO₂) is bubbled through the mixture for 30 min
- HP 35% is metered to the reactor over 5 hours, with cooling to maintain 60°C

• The day before

Replacement of the CO₂ flowmeter

Event #6 - Manufacturing facility, Germany - 2018

• The accident

- When metering the HP35%, the normal initial exotherm was not observed
- Temperature was raised with heating coils
- … Runaway
- 30% of the reactor mass vented via the Safety Valve and discharged to the roof

• The causes

- Flowmeter units mismatch =>lack of catalyst
- Heating initiated the side reaction: H_2O_2 (liq) \rightarrow H_2O (liq) + $\frac{1}{2}O_2$ (gas)
- The hazard of HP accumulation was known, but the SOP was not detailed enough

page 23

Event #7 - Manufacturing facility, China, 2015

• The process

- Continuous reaction of an organic with HP 70%
- Performed in a cascade of stirred reactors under atmospheric pressure
- Shut down sequence:
 - Flush the HP feed line with water into the reactors in normal conditions
 - <u>Then</u>, drain the reactors content into the holding tank

Sequence of events

- A planned shutdown turned into an emergency shutdown by steam outage
- Reactors containing organics were drained to the holding tank
- The following shift identified that the HP feed line was not flushed
- A Low level interlock on the 1st reactor was bypassed to flush the HP line to the reactor with drain line open to the holding tank

Hazards of Hydrogen Peroxide handling, EPSC, Maastricht, Dec. 2023

Event #7 - Manufacturing facility, China, 2015

• The accident

- Condensed-phase detonation in the drain pipe, fortunately located in a trench
- Shrapnels found dozens of meter away
- No injuries and no damages to the environment

• The causes

- HP 70% displaced during flushing contacted organic product in the (heated) drain pipe
- Mixtures of organics with HP > 40% can become explosive
- Scenario identified in Hazop, however:
 - The SOP was not sufficiently detailed
 - Poor Bypass management

6. Lessons learned

page 26

Root cause by PSM element

- For these 7 events, the main root causes relates to:
- Process Safety Information
 - Relevant information was not available (4 event) or misunderstood (1 event)
 => Do not rely only on SDS's content & Involve multidisciplinary groups

Operating Procedures

Not detailed enough (2 events) or not respected (1 event)
 => Barriers to major scenarios in SOP should be clearly defined & understood

• Process Hazard Analysis

Internal method limitation (1 event) and Layer of protection rating (1 event)
 => Method was updated

