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...influences drop trajectories

| PFOTS-on-Si, drop 1

b

| PFOTS-on-1-mm-SiO,, drop 1

[Li et al., Nat. Phys. 2022]

...can be used for energy harvesting

Alelectrode g E

[Xu et al., Nat. 2020]

...damages semiconductors

...even happens on plant leafs
during rinsing

[Hagimoto et al., Solid State Phenom. 2009]

[Armiento et al., Commun. Mat. 2022]
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Practicality
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Electric double layer » Charged solid surface surface

» Characterized by zeta potential

N = Diffuse layer of countercharges in liquid
>
% = Thickness is Debye length ~1-500 nm
= |2 = Described by Poisson-Boltzmann Theory
o | 4 Origins of surface charge
o) O
. a ! 3 = Dissociation of surface groups
' W W W W W W W W W W % = Specific adsorption of ions
Surface charge o % = Dissolution of the solid
©
N
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FUNDAMENTAL CHARGE SEPARATION

MECHANISM
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Charge separation mechanism

Electric double layer of bound surface
charge and layer of diffuse charge in liquid

Receding contact line dewets bound
surface charge

Diffuse charge remains in the liquid
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Electric double layer » Surfaces like glass deprotonate upon contact
with liquid
K
. R—0OH o R—-—0" + H
A . : :
% = Diffuse layer structure and chemical reaction on
<~ 1 9 surface are coupled through concentrations and
S| 5 electric fields
c ()
s | = = Equilibrium surface charge depends on diffuse
%‘ S layer and chemistry, well defined for flat
. 0| surfaces
+ : \
" N N N N N N N NN N *CIEJ
IS —->What determines electric double layer
Surface charge o o . )
g structure at receding contact line?
N
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The contact angle is the angle that forms
between a solid surface and that of a drop or
puddle at the solid-liquid-gas three-phase
contact line

Hydrophobic contact angle

0 * |t depends only on the materials and not on the
shape of the liquid drop or puddle

» Surfaces with contact angles >90° are called
hydrophobic and <90° hydrophilic

Hydrophilic contact angle = Movement of the contact line in the direction of

m\ the solid is called wetting and in the direction of
0 the liquid is called dewetting

= High wetting velocities increase and dewetting
velocities decrease the local contact angle
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= Close to the contact line, EDL structure is
warped by the liquid-gas interface

O >90° O = 90° O < 90° » Bound surface charge (pink) increases with the
contact angle

» Linearized analytical expression for the effect
found by Dorr & Hardt (Phys. Rev. E, 2012)

diffuse layer
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» Substantial wall-normal flow along the liquid-
gas interface near the contact line

» Influence of flow is measured by Péclet number

~Pe A b _ Ul
°~D
= Advective transport expands the Debye length
to
2

A

Aefr =
0 < Go streamlines © VPe? + 4 — Pe
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Full analytical model for surface charge at
receding contact line

i air water ¢crL(Pe) 1 1
. positive 4 T = E(K +1)— \/Z (K+1)2+ KCAgss/A
receding contact line _ &PcL
° / oc.(6,Pe) = 30 @
S . neutral = =
S ( Effects on the atomistic scale
hydrati hell . .
. a '°§ s — = Dewetted surface charges have hydration shells,
negative - ~ some of which carry a counterion
substrate ) —7 = Net surface charge is thus reduced by factor
ol ewetting velocity U

w = 0(0.1 — 1) independent of 6, Pe
- Model should correctly predict trends
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1 T
h Y 1= Two regimes in Pe, high velocities surprisingly
B I el reduce charge separation, caused by increased
a 6 = 60° effective Debye |ength
107 P ' > g, ! Ll
o N Crecetmumber N = Charge separation is strongest on hydrophobic
Sos T [ surfaces with high contact angles
= —— zeta potential =]
§ 0 = g » Higher charges on surfaces with higher zeta
ool | E potential
é 0 /Debye length (nm) g
3 200 400 600 800 3

20 40 60 80 0° 30° 60° 90°
zeta potential (mV) contact angle
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a 1l syringe b | kl ‘t
peak curren

_U i R = Validation with sliding drop experiments

current amplifier I —

» Charge separation during electrode contact
measured by tail current

current

velocity U

. electrode

substrate

nycrophobic Suface e s = Analytical calculations use ,Cox-Voinov model’
\K{ - e for dynamic contact angle - loses validity

c around Pe = 4

PRALM = -{ 100

E

S

8 1* 2 - Model prediction of decreasing charge

g separation with increasing velocity clearly

o 160 = . .

§ : reflected in experiment

i -6 neg. surface charge density o

o tail current -1 40

10° [ \ | \

Péclet number
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Charge separation even for grounded liquids’

Ungrounded puddles or reservoirs can acquire kilovolt potentials and lead to discharge?

Universal phenomenon for dewetting with conductive liquids'3

Charge separation leads to substantial contact angle hysteresis?

Special relevance for liquids of medium conductivity

Condensation processes Cleaning and rinsing Draining of equipment

Dewetting faster is safer, for Péclet numbers larger than one. Rule of thumb:

~

U &

Pe=—x+ |2
T

U: dewetting velocity in m/s, ¢,: dielectric constant of liquid, k: liquid conductivity in S/m
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Péclet number definition
P — UA
°~D
Debye length as a function of conductivity k
_ |€0&rD
A= k

Putting it together

UZeye, D g [0 ~ e U e,
Pe = =U |— [—=U — * 0.0941 =~ — —
€ j D?k k~ND e 10 | %

Here, we used the fact that D ~ 107°m? /s for nearly all electrolytes. U and k are the dewetting
velocity and the liquid conductivity in Sl units, m/s and S/m respectively.



APPENDIX:

FULL ANALYTICAL MODEL FOR CHARGE

SEPARATION
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Details in our paper: https://arxiv.orq/pdf/2305.02172.pdf

dolPe) Lo gy \/1 (K +1)" + KCAegr/A
ot 2 4
oer (6, Pe) = /\j;(L@)
with

= ((/¢r = D/(Cor/C + 1)
C = BF/\/({E@T)

Pe=UMND
9(0) = =/(20)
Aeff 2 A

- vV Pe?2 +4 — Pe
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APPENDIX:
FULL VARIABLE LIST

Symbol
OcL
bcL

br
A

O T =2 o v m

0

*results are insensitive to this parameter, even when it is off by one or two orders of magnitude.

Variable

Dewetted surface charge density on the solid surface
Surface potential at contact line

Thermal potential, usually 25 mV at ambient conditions
Debye length

Dielectric permittivity of the liquid

Native zeta potential of the liquid/solid pair
Elementary charge

Active site density of the surface, usually 5/nm? *
Dewetting velocity

lon diffusivity, usually ~ 10~°m?/s

Contact angle
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Practical handbook on electrostatics:

Static Electricity, Understanding, Controlling, Applying,
Luttgens, Gunter / Luttgens, Sylvia / Schubert, Wolfgang

https://www.wiley-vch.de/de/fachgebiete/ingenieurwesen/static-electricity-978-3-527-34128-3

Experimental work on the charging of high-pressure water jets:

Elektrostatische Aufladung beim Verspruhen von Wasser — Untersuchung praxisrelevanter
Prozesse bei der Reinigung kleiner und mittelgrol3er Behalter.
Baumann, F., M. Himstedt, D. Mockel, M. Thedens und M. Beyer, 2022.

https://oar.ptb.de/resources/show/10.7795/110.20220629
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