ELECTROSTATIC CHARGING WHEN CONDUCTIVE LIQUIDS DEWET SOLID SURFACES

Third European Conference on Plant & Process Safety

Aaron D. Ratschow

ABOUT ME

Aaron Ratschow

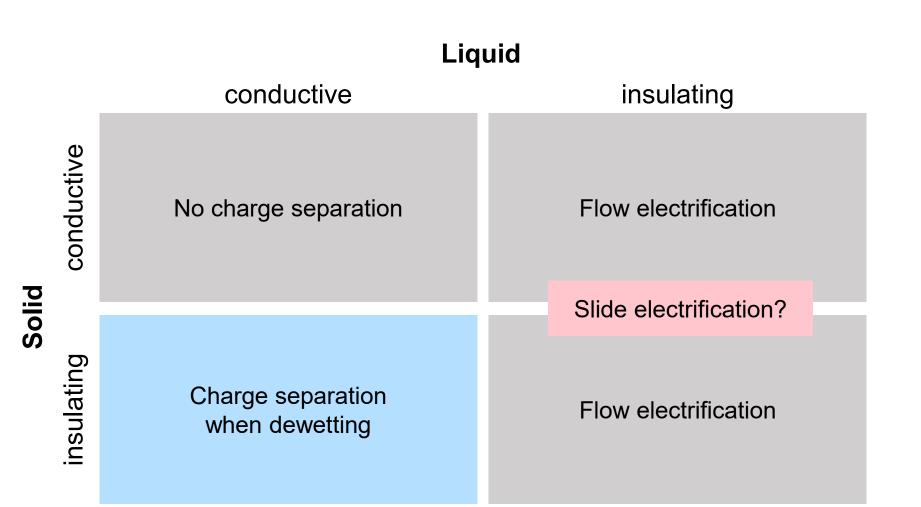
Education

BS Ind. Eng. (TU Darmstadt) BS Mech. Eng. (TU Darmstadt) MS Proc. Eng. (TU Darmstadt)

Experience

2014-2017 Junior Comtec, Consultant/Project Manager
2018 Bayer PPS EXS, Intern
2018-2020 Bayer PPS EXS, Simulation Specialist
2020- TU Darmstadt NMF, External PhD Candidate

Nano- and Microfluidics

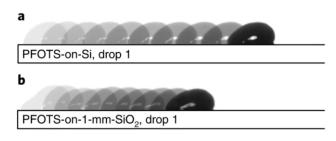

SOLID-LIQUID CONTACT ELECTRIFICATION

Nano- and Microfluidics

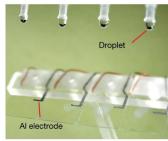
TECHNISCHE

UNIVERSITÄT DARMSTADT

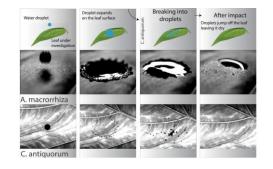
CHARGE SEPARATION AT CONTACT LINES...



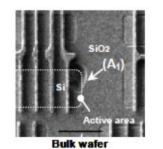
TECHNISCHE UNIVERSITÄT

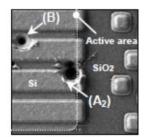

DARMSTADT

...influences drop trajectories


[Li et al., Nat. Phys. 2022]

... can be used for energy harvesting


[Xu et al., Nat. 2020]


...even happens on plant leafs

[Armiento et al., Commun. Mat. 2022]

...damages semiconductors during rinsing

SOI wafer

[Hagimoto et al., Solid State Phenom. 2009]

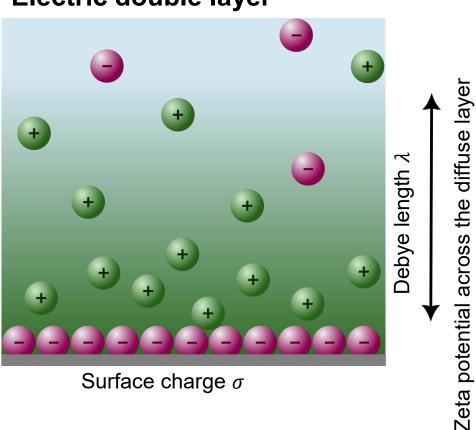
EXPERIMENTS AND SIMULATIONS HELP DEVELOPING A THEORY

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT

DARMSTADT

Observation Prediction **Numerical Simulations Experiments and** Theory **Measurements** wate 1 receding contact line hydration shells dewetting velocity U



ELECTRIC DOUBLE LAYERS

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT DARMSTADT

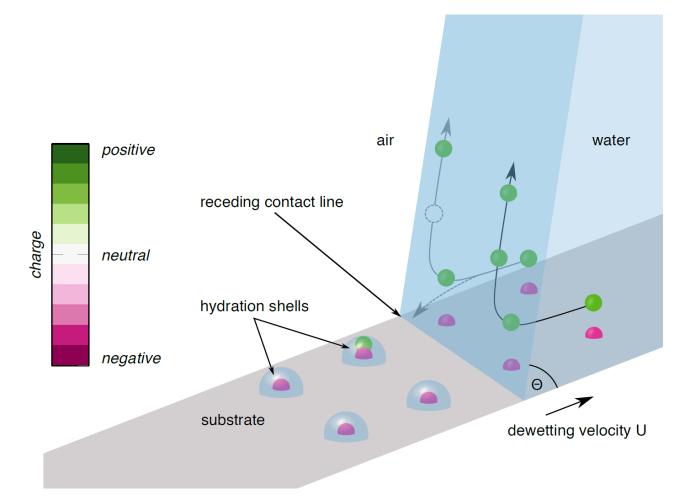
Electric double layer

Charged solid surface surface

- Characterized by zeta potential
- Diffuse layer of countercharges in liquid
 - Thickness is Debye length ~1-500 nm
 - Described by Poisson-Boltzmann Theory

Origins of surface charge

- Dissociation of surface groups
- Specific adsorption of ions
- Dissolution of the solid

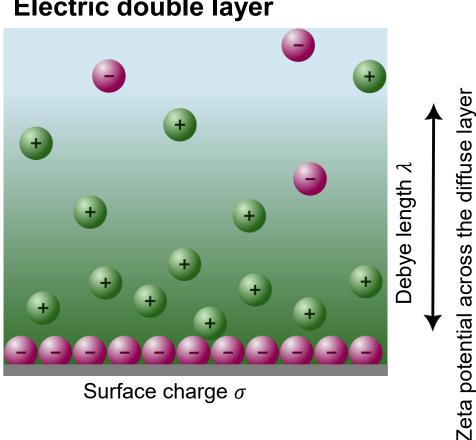

FUNDAMENTAL CHARGE SEPARATION MECHANISM

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT

Charge separation mechanism

- Electric double layer of bound surface charge and layer of diffuse charge in liquid
- Receding contact line dewets bound surface charge
- Diffuse charge remains in the liquid


ELECTRIC DOUBLE LAYER AND SURFACE CHEMISTRY

TECHNISCHE UNIVERSITÄT

DARMSTADT

Electric double layer

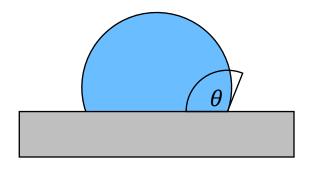
Surfaces like glass deprotonate upon contact with liquid

 $R - OH \stackrel{K}{\leftrightarrow} R - O^{-} + H^{+}$

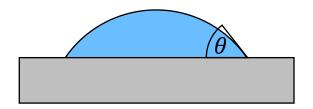
- Diffuse layer structure and chemical reaction on surface are coupled through concentrations and electric fields
- Equilibrium surface charge depends on diffuse layer and chemistry, well defined for flat surfaces

\rightarrow What determines electric double layer structure at receding contact line?

BACKGROUND: WETTING AND CONTACT ANGLES



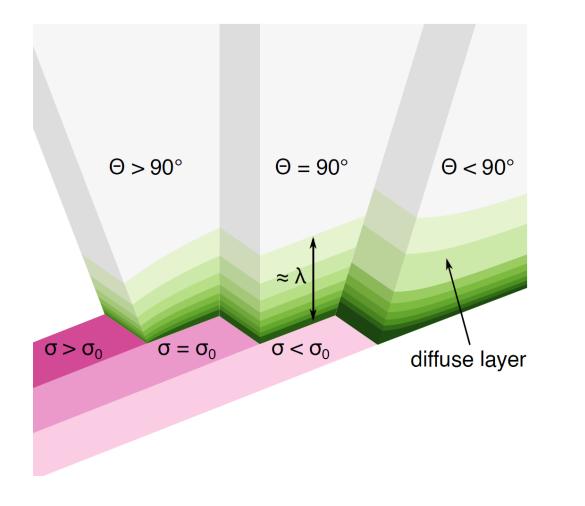
Nano- and Microfluidics


TECHNISCHE UNIVERSITÄT

DARMSTADT

Hydrophobic contact angle

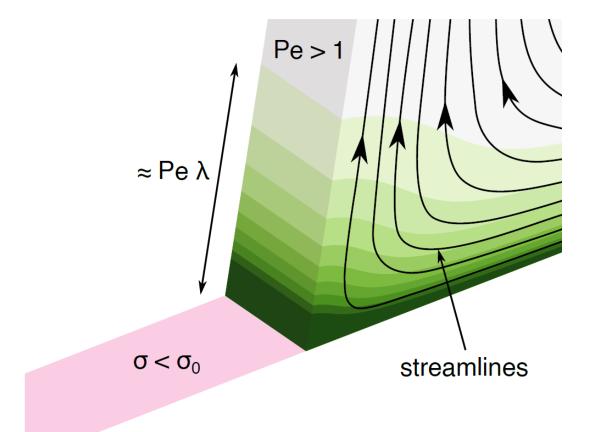
Hydrophilic contact angle


- The contact angle is the angle that forms between a solid surface and that of a drop or puddle at the solid-liquid-gas three-phase contact line
- It depends only on the materials and not on the shape of the liquid drop or puddle
- Surfaces with contact angles >90° are called hydrophobic and <90° hydrophilic
- Movement of the contact line in the direction of the solid is called wetting and in the direction of the liquid is called dewetting
- High wetting velocities increase and dewetting velocities decrease the local contact angle

INFLUENCE OF THE CONTACT ANGLE

TECHNISCHE UNIVERSITÄT DARMSTADT

- Close to the contact line, EDL structure is warped by the liquid-gas interface
- Bound surface charge (pink) increases with the contact angle
- Linearized analytical expression for the effect found by Dörr & Hardt (Phys. Rev. E, 2012)

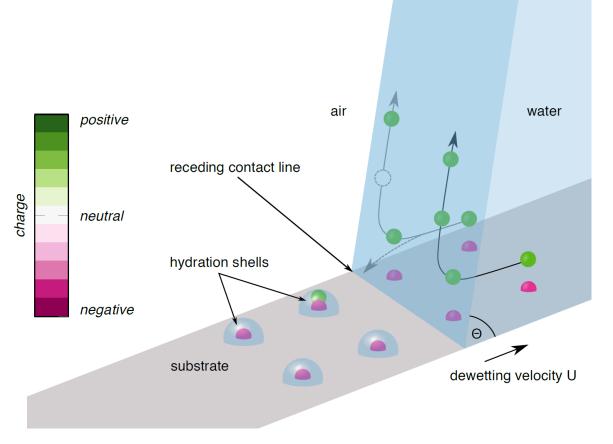

$$\frac{\sigma_0}{\sigma} = g(\theta) = \frac{2\pi}{\theta}$$

INFLUENCE OF LIQUID FLOW

TECHNISCHE UNIVERSITÄT DARMSTADT

- Substantial wall-normal flow along the liquidgas interface near the contact line
- Influence of flow is measured by Péclet number $Pe = \frac{U\lambda}{D}$
- Advective transport expands the Debye length to

$$\lambda_{\rm eff} = \frac{2}{\sqrt{Pe^2 + 4} - Pe} \lambda$$


ANALYTICAL MODEL FOR SURFACE CHARGE

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT

DARMSTADT

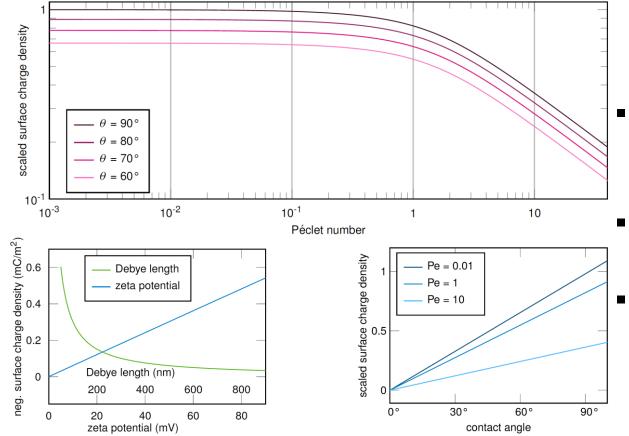
Full analytical model for surface charge at receding contact line

$$\frac{\phi_{CL}(Pe)}{\phi_T} = \frac{1}{2}(K+1) - \sqrt{\frac{1}{4}(K+1)^2 + KC\lambda_{\text{eff}}/\lambda}$$

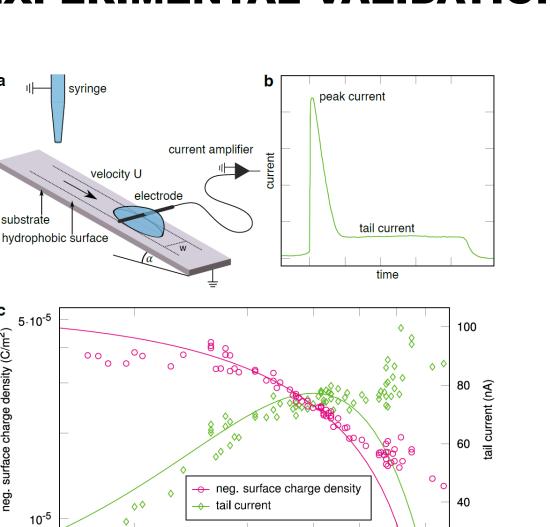
$$\sigma_{CL}(\theta, Pe) = \frac{\varepsilon \phi_{CL}}{\lambda_{eff} g(\theta)}$$

Effects on the atomistic scale

- Dewetted surface charges have hydration shells, some of which carry a counterion
- Net surface charge is thus reduced by factor $\omega = O(0.1 1)$ independent of θ , *Pe*


\rightarrow Model should correctly predict trends

THEORETICAL PREDICTIONS FOR SURFACE CHARGE DENSITY


Nano- and Microfluidics

- Two regimes in *Pe*, high velocities surprisingly reduce charge separation, caused by increased effective Debye length
- Charge separation is strongest on hydrophobic surfaces with high contact angles

 Higher charges on surfaces with higher zeta potential

EXPERIMENTAL VALIDATION

Péclet number

5

Nano- and Microfluidics

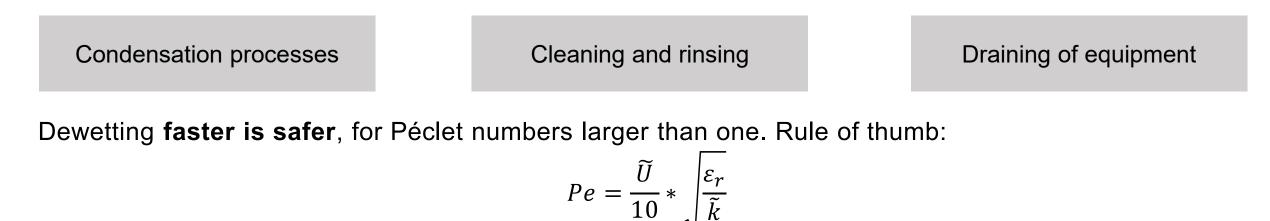
TECHNISCHE UNIVERSITÄT DARMSTADT

- Validation with sliding drop experiments
- Charge separation during electrode contact measured by tail current
- Analytical calculations use ,Cox-Voinov model' for dynamic contact angle \rightarrow loses validity around Pe = 4
- \rightarrow Model prediction of decreasing charge separation with increasing velocity clearly reflected in experiment

 \diamond

1

а


С

neg. surface charge density (C/m²)

IMPLICATIONS

- Charge separation even for grounded liquids¹
- Ungrounded puddles or reservoirs can acquire kilovolt potentials and lead to discharge²
- Universal phenomenon for dewetting with conductive liquids^{1,3}
- Charge separation leads to substantial contact angle hysteresis³
- Special relevance for liquids of medium conductivity

 \widetilde{U} : dewetting velocity in m/s, ε_r : dielectric constant of liquid, \widetilde{k} : liquid conductivity in S/m

3rd European Conference on Plant & Process Safety | Charging of conductive liquids | Aaron D. Ratschow

UNDERLYING RESEARCH

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT DARMSTADT

- 1. **A. D. Ratschow**, L. S. Bauer, P. Bista, S. A. L. Weber, H.-J. Butt, S. Hardt, *How charges separate when surfaces are dewetted*, 2023, arXiv, <u>https://doi.org/10.48550/arXiv.2305.02172</u>
- 2. P. Bista*, **A. D. Ratschow***, H.-J. Butt, S. A. L. Weber, *High Voltages in Sliding Water Drops,* 2023, Journal of Physical Chemistry Letters, <u>https://doi.org/10.1021/acs.jpclett.3c02864</u>
- X. Li*, A. D. Ratschow*, S. Hardt, H.-J. Butt, Surface Charge Deposition by Moving Drops Reduces Contact Angles, 2023, Physical Review Letters, <u>https://doi.org/10.1103/PhysRevLett.131.228201</u>

Lisa S. Bauer

Pravash Bista

Prof. Stefan A. L. Weber

Prof. Hans-Jürgen Butt

Prof. Steffen Hardt

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT DARMSTADT

Max Planck Institute for Polymer Research

Interaction between Transport and Wetting Processes

ERC in Horizon 2020

European Research Council Established by the European Commission

Any Questions?

THANK YOU FOR YOUR ATTENTION

Xiaomei Li

APPENDIX: RULE OF THUMB DERIVATION

Péclet number definition

$$Pe = \frac{U\lambda}{D}$$

 $\lambda = \left| \frac{\varepsilon_0 \varepsilon_r D}{\varepsilon_0 \varepsilon_r} \right|$

Debye length as a function of conductivity k

Putting it together

$$Pe = \sqrt{\frac{U^2 \varepsilon_0 \varepsilon_r D}{D^2 k}} = U \sqrt{\frac{\varepsilon_r}{k}} \sqrt{\frac{\varepsilon_0}{D}} = \widetilde{U} * \sqrt{\frac{\varepsilon_r}{\widetilde{k}}} * 0.0941 \approx \frac{\widetilde{U}}{10} * \sqrt{\frac{\varepsilon_r}{\widetilde{k}}}$$

Here, we used the fact that $D \approx 10^{-9} \text{m}^2/\text{s}$ for nearly all electrolytes. \tilde{U} and \tilde{k} are the dewetting velocity and the liquid conductivity in SI units, m/s and S/m respectively.

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT DARMSTADT

APPENDIX: FULL ANALYTICAL MODEL FOR CHARGE SEPARATION

Nano- and Microfluidics

TECHNISCHE UNIVERSITÄT

DARMSTADT

Details in our paper: <u>https://arxiv.org/pdf/2305.02172.pdf</u>

$$\frac{\phi_{\rm CL}(Pe)}{\phi_{\rm T}} = \frac{1}{2} \left(K + 1 \right) - \sqrt{\frac{1}{4} \left(K + 1 \right)^2 + KC\lambda_{\rm eff} / \lambda}$$
$$\sigma_{\rm CL}(\theta, Pe) = \frac{\varepsilon \phi_{\rm CL}}{\lambda_{\rm eff} g(\theta)}$$
with

$$K = (\zeta/\phi_{\rm T} - 1)/(C\phi_{\rm T}/\zeta + 1)$$
$$C = e\Gamma\lambda/(\varepsilon\phi_{\rm T})$$
$$Pe = U\lambda/D$$
$$g(\theta) = \pi/(2\theta)$$
$$\lambda_{\rm eff} = \frac{2}{\sqrt{Pe^2 + 4} - Pe}\lambda$$

3rd European Conference on Plant & Process Safety | Charging of conductive liquids | Aaron D. Ratschow

APPENDIX: FULL VARIABLE LIST

Symbol Variable Dewetted surface charge density on the solid surface σ_{CL} Surface potential at contact line ϕ_{CL} Thermal potential, usually 25 mV at ambient conditions ϕ_T λ Debye length Dielectric permittivity of the liquid ε ζ Native zeta potential of the liquid/solid pair Elementary charge е Γ Active site density of the surface, usually 5/nm² * U Dewetting velocity Ion diffusivity, usually $\approx 10^{-9} \text{m}^2/\text{s}$ D

 θ Contact angle

*results are insensitive to this parameter, even when it is off by one or two orders of magnitude.

TECHNISCHE UNIVERSITÄT

DARMSTADT

TECHNISCHE UNIVERSITAT DARMSTADT A BAYER ER

Nano- an

APPENDIX: ADDITIONAL READING

Practical handbook on electrostatics:

Static Electricity, Understanding, Controlling, Applying, Lüttgens, Günter / Lüttgens, Sylvia / Schubert, Wolfgang

https://www.wiley-vch.de/de/fachgebiete/ingenieurwesen/static-electricity-978-3-527-34128-3

Experimental work on the charging of high-pressure water jets:

Elektrostatische Aufladung beim Versprühen von Wasser – Untersuchung praxisrelevanter Prozesse bei der Reinigung kleiner und mittelgroßer Behälter. Baumann, F., M. Himstedt, D. Möckel, M. Thedens und M. Beyer, 2022.

https://oar.ptb.de/resources/show/10.7795/110.20220629