

HAZOP+

Your plant's <u>safety</u>, <u>efficiency</u> and <u>ecological viability</u> are crucial for its sustainability in an

increasingly complex and demanding competitive environment.

HAZOP + OPEX4.0 = HAZOP+

HAZOP

- A deep Process Analysis method used for Process Safety
- Results in recognition of safety gaps and determination of corresponding risk reducing measures
- deepest and most resource intensive analysis of a plant after its original design process, during its utilization life

• OPEX4.0

- Many companies have a systematic
 OPEX (Operational Excellence) process,
 which is used to optimize yields, utility
 usage, minimize unplanned downtime,
 and other parameters with cost impact
- In OPEX4.0 the optimization of operating parameters is based on data centered methods and AI for the Interpretation of the operating data.

HAZOP+

- Combines a HAZOP study with an OPEX4.0 project, realizing synergies between the two

HAZOP+ workflow

- HAZOP study performed by experienced TÜV SÜD experts
 - Using the unfavorable run periods identified in the data analys for systematic discussion of plant operation
- OPEX4.0 performed by partner atlan-tec Systems
 - Using the favorable run periods identified in the data analysis
 - Optimization of operating parameters using Machine Learning
- Certification of optimization according VDI 3714* by TÜV SÜD experts

*VDI3714: German engineering guideline for the optimal execution of big data projects

HAZOP+: identifies new correlations & synergies ...

Safety Reviews (HAZOP) and data driven Process Parameter Optimization (OPEX4.0) are coordinated for the use of synergies, but nevertheless always performed seperately.

Preparation of Documents and Data

- Both studies benefit from efficient and target oriented document preparation
- For both studies updated design documents and operating data are needed (e.g., P&IDs, control schemes, time sequence/trends of process parameters, List of undesired events, etc.)
 - Synergy in the preparation of data and documents regarding time & effort
 - Good preparation leads to efficient execution and reduced costs
- An assessment of 'Industry 4.0 Readiness' can support the preparation phase:
 - SIRI assessment of TÜV SÜD (online or offline)
 - Industry 4.0 readiness assessment of ats (online)

Execution of HAZOP+ Projects

Preparation - Required documents - Necessary updates - Data (from DCS, LIMS)	Analysis -HAZOP study -Data- & AI- based analysis of operation	Implementation -HAZOP action items -Optimisations	Follow up & Finetuning
 P&ID, Control scheme, plot plan, equipment data, Plant upsets, repairs, incidents, Operating parameter data from DCS, LIMS, optimally from several years Simulation results (if available) 	 HAZOP: Review of all P&IDs, Check of all safety devices (SIL, PSVs,) OPEX 4.0: Analysis of process parameters Determining good and bad run periods Formation of models Synergies: Safe limits of optimisation Including plant upsets and 'bad' run periods in the HAZOP study 	 Safety measures, resulting from HAZOP Optimized setpoints of relevant control loops Offline, Operator input Closed loop: AI feeds optimized setpoints directly to DCS Certification of the Optimization according VDI3714 through TÜV SÜD 	 Follow up on HAZOP measures/action items Further optimisation of operating parameters, based on continuously updated statistical models of the AI

The basic principle of OPEX 4.0

Your PROCESS

Historical Process Parameter DATA (from DCS: P, T, F, L, Q,..; from Lab)

PROCESS MODELS = DIGITAL TWIN → OPTIMIZER (e.g. towards minimal cost) Neural network technology

ADVANCED BIG DATA ANALYTICS with our smart, data-driven solutions

Optimization of operating parameters using Machine Learning

Optimization Example: Multistage Reactor: PVA

Challenge:

- A multistage process converts raw materials into a product

- Quality fluctuations are caused by unknown fluctuations in the raw material

• Process Optimisation:

- The ANN model, trained with example data, predicts yield and quality

- The real time optimizer finds the best setpoints for key control loops

- Quality issues are quickly recognized and fixed, based on prediction and optimization

• OPEX 4.0:

- Process stability increased by factor 10
- Economics: 5% reduction in manuf. costs

Summary

Goal of HAZOP+ is a safe plant, running at stabile conditions with optimized economic performance

- Target function of optimization 'minimized costs' or 'maximized Ebit/hr'

Synergies of HAZOP and OPEX 4.0

- <u>Efficient preparation</u> of data & documents (P&IDs, functional plans, operating data, etc.)
 Strong overlap of required data & documents
- <u>Improved quality of HAZOP</u> study through systematic use of the operational data from the optimization project
 'Bad' operating periods and plant upsets show the actual problems, which often cause safety incidents
- <u>More room for operational optimization and reduced risk of optimization</u> through exactly calibrated safety limits resulting from the new HAZOP study

Safety limits are fixed in awareness of the optimization effort, not more conservative than needed

<u>Certification of optimization project</u> according VDI German engineering guideline
 Certification of optimization projects according to the VDI/VDE-GMA 3714 standard through TÜV SÜD experts

Family of AI applications by atlan-tec systems and TÜV SÜD

OPEX4.0

- Data based, automated, continuous optimization of a plant's operating/process parameters by means of Al/Machine Learning towards an economical optimum (e.g. 'minimized costs/ton')
- OPEX4.0 projects follow the recommendations of VDI/VDE-GMA guideline 3714 (execution of big data projects in production), ensuring a systematic, transparent and structured project workflow
- Projects can be certified by TÜV SÜD experts

HAZOP +

- Synergistic combination of HAZOP and OPEX4.0

AMAIS

- Asset Monitoring based on permanently installed condition sensors (e.g. for corrosion, erosion, vibrations, fouling,..)
- Evaluation of sensor data by AI, visualization on a dashboard
- Connecting asset integrity data with process data for identification of correlations and better decision making

Questions? Talk to us!

vertrieb.chemieservice@tuvsud.com or +49 214 86910-106

Dr. Hans V. Schwarz <u>Hansvolkmar.Schwarz@TUVSUD.com</u> +49 1520 921 5207

Dipl.Ing. Thomas Fröse <u>T.Froese@atlan-tec.com</u> +49 2161 277 5253

bH - HAZOP

TÜV SÜD Chemie Service Gr

Add value. Inspire trust.