
EUROPEAN CONFERENCE

ON PLANT & PROCESS

SAFETY

HIMA Model based safety solutions - 14.09.2022

Bernd Schaefer – Product Manager Programming

Software

© HIMA Paul Hildebrandt GmbH 2017 2

Bernd Schaefer

Product Manager – Programming Software

HIMA Paul Hildebrandt

Albert-Bassermann-Straße 28

68782 Brühl

Phone (0 62 02) 709 - 453

E-Mail b.schaefer@hima.com

Model based safety to

increase plant efficiency

© HIMA Paul Hildebrandt GmbH 2018 4

Motivation for model based safety solutions

Out[y] =

f[n](P, T, L, F, C, …)

Fackel

Quench/
Tauchung

Auffangbehälter

Abscheider

M

T P

F

TA

F

TE

- +

N2

Verfahrens-
optimierung

Process

optimization

Separator
Quench

Stack

Catch Tank
1

2

…

n

1

n

…

2

© HIMA Paul Hildebrandt GmbH 2017 5

Benefit – Model Based

Safety Solutions

Your

Benefit

Trip Point

controlled by the Process Model
Trip Point

without Process Model

Process Variable

(model based)Process Variable

More output more productivity of the plant.

Benefits of Model based safety solutions

© HIMA Paul Hildebrandt GmbH 2018 6

Benefits of Model based safety solutions

Increase your

plant output!!!

▪ Process optimization possible – allows new kind of processing

▪ Process safety optimization possible – availability instead of shut-down

▪ Enables additional safety for complex processing – lower risk / less effort

You know better, what it means

to increase plant output by 20%

to 30% in terms of money

© HIMA Paul Hildebrandt GmbH 2018 7

Derived requirements for the Safety system

▪ High performance for mathematical operations

▪ Possibility for the integration of mathematical & statistical models for dynamically process control

▪ Simple implementation of complex mathematical functions

• Differential equations, complex numbers, matrix operations, series expansions, …

▪ Easy implementation of models from simulation software (MATLAB Simulink)

© HIMA Paul Hildebrandt GmbH 2017 8

SILworX® High-End Safety Engineering

▪ One engineering tool for HIMax®, HIMatrix® and HIQuad X® Systems

▪ Fully integrated configuration, programming and diagnostic environment

▪ Offline simulation and online test

▪ SIL3 comparator for hardware and logic changes

▪ Supports reload functionality for hardware, communication
and logic changes

▪ Multitasking for up to 32 independent programs

▪ Password and user management protection for projects
and controller access

▪ IEC 61131-3 programming:

▪ function block diagrams (FBD),

▪ sequential function charts (SFC),

▪ structured text (ST)

▪ C++ interface –
the base for model based safety

And how to achieve this

SILworX C++ FBs: Extend Your

Flexibility

▪ Allow the user to embed their own C++ programs into
the SILworX

▪ Inputs and outputs of C++ FBs serve as an interface to
the functions of the embedded C++ programs (only
elementary data types allowed!).

▪ Compared to function block diagrams or structured
text: More flexible programming and higher
performance.

▪ C++ source code from third-party tools (such as
mathematics and simulation software) can be
embedded into the SILworX
-> Model based safety solutions

10© HIMA Paul Hildebrandt GmbH 2020

© HIMA Paul Hildebrandt GmbH 2018 11

But………….

▪ There are still some restrictions in c++ language usage (e.g.

dynamic memory allocation, ………..

▪ C++ is a FVL (Full variability language), thus

– C++ code imported in a SILworX function block to be

developed according the V-model of IEC 61508 / EN

50128

– Code must be completely pre-validated (tested)

– Necessary documentation for this process to be created

– No possibility to correctly and completely validate that

code inside SILworX
don‘t forget…

It‘s a safety system!!!

© HIMA Paul Hildebrandt GmbH 2018
12

Model based safety based on a C++ Function

Block Interface – A new approach to process

safety

© HIMA Group 2022 13

Are there any Questions?

Simple things can be difficult!

© HIMA Paul Hildebrandt GmbH 2017 14

Email: info@hima.com

Website: www.hima.com

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28

68782 Brühl, Germany
Phone: +49 (0) 6202 / 709-0

Fax: +49 (0) 6202 / 709-107

Thank You.

SILworX® - C++ Interface

Some more details……

© HIMA Paul Hildebrandt GmbH 2018 16

SILworX® C++ Function Block Interface - Usability

▪ In general all SILworX ® C++ function blocks can be used and implemented like all standard
function blocks.

▪ SILworX ® C++ function block standard handling in SILworX ®

• archive, restore

• Cut, copy, paste

▪ SILworX ® C++ function block attributes

• Normal

• read-only

• know-how protected

▪ RELOAD is possible

▪ processing in separate program recommended

▪ Runtime monitoring

▪ Time slice limitation

© HIMA Paul Hildebrandt GmbH 2018 17

C++ Function Block Interface - Handling

1. create C++ function block and define properties

• name

• height, wideness, extendibility

• variant

2. Define In-/ and Output variables

• VAR_Input

• VAR_Output

• VAR

3. export C++ function block source code

4. edit C++ function block source code

5. import C++ function block source code and additional header and source code files

© HIMA Paul Hildebrandt GmbH 2018 18

SILworX® C++ Function Block Interface - Editor

© HIMA Paul Hildebrandt GmbH 2018 19

C++ Function Block Interface - Restrictions

▪ global variables can‘t be used in SILworX ® C++ function block

▪ SILworX ® standard function blocks can‘t be used in C++ function blocks

▪ user defined data types like arrays or structs can‘t be used in C++ function blocks

▪ limited C++ language features

▪ class structure of C++ function block has to be changed in the interface editor

▪ no offline-/ online simulation of the internal source code in SILworX ® possible

▪ after a RELOAD of a changed C++ function block the initial values are used for one cycle

▪ C++ function blocks can be only tested as a “blackbox”

▪ customer is responsible for internal safety relevant source code

=> FVL programming language => code qualification according to IEC 61508 Ed. 2 necessary

▪ C++ code development isn’t a HIMA focus

© HIMA Paul Hildebrandt GmbH 2018 20

C++ Function Block Interface – stack & data

▪ automatically 4kByte stack

reserved

▪ additional stack size has to

be calculated or estimated

▪ Maximum stack size

Details in SILworX C++ Function Block manual

© HIMA Paul Hildebrandt GmbH 2018 21

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 22

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 23

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 24

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 25

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 26

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 27

SILworX® C++ Function Block Interface –

language

© HIMA Paul Hildebrandt GmbH 2018 28

C++ Function Block Interface – source code

▪ Declaration of global C++ variables possible

• valid for all instances of the function block

▪ standard header files

• iec_types.h

• iec_std_types.h

▪ additional header files

• float.h

• limits.h

• math.h

• stddef.h

© HIMA Paul Hildebrandt GmbH 2018 29

SILworX® – source code

▪ no dynamic memory allocation e.g. [malloc(Sizeof …)]

▪ no recursive C++ function block call

▪ no interrupts

▪ no GoTo commands

▪ no inline assembler

▪ no pragmas

• #pragma name

▪ no runtime type information (RTTI)

• dynamic_cast

• typeid

• exception handling

▪ no class destructor (~classname)

Again!!

It is still a safety

system!!!

© HIMA Paul Hildebrandt GmbH 2018 30

SILworX® – header & cpp

▪ header and sourcecode file name depending

on C++ function block name

▪ basic structure must not be changed

• SRCUSRC_***.h

• SRCUSRC_***.cpp

▪ additional header and source code files

can be implemented, e.g.

• cCode_FC.h

• cCode_FC.cpp

© HIMA Paul Hildebrandt GmbH 2018 31

SILworX® – header & cpp

▪ header and sourcecode file name depending

on C++ function block name

▪ basic structure must not be changed

• SRCUSRC_***.h

• SRCUSRC_***.cpp

▪ additional header and source code files

can be implemented, e.g.

• cCode_FC.h

• cCode_FC.cpp

© HIMA Paul Hildebrandt GmbH 2018 32

SILworX® – header & cpp

▪ header and sourcecode file name depending

on C++ function block name

▪ basic structure must not be changed

• SRCUSRC_***.h

• SRCUSRC_***.cpp

▪ additional header and source code files

can be implemented, e.g.

• cCode_FC.h

• cCode_FC.cpp

© HIMA Paul Hildebrandt GmbH 2018 33

SILworX® – header & cpp

▪ header and sourcecode file name depending

on C++ function block name

▪ basic structure must not be changed

• SRCUSRC_***.h

• SRCUSRC_***.cpp

▪ additional header and source code files

can be implemented, e.g.

• cCode_FC.h

• cCode_FC.cpp

