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Alkoxylation – chemistry and hazards

13.09.20222

Δ𝐻𝑅 ≈ −92
𝑘𝐽

𝑚𝑜𝑙
= −2100

𝐽

𝑔

▪ Runaway of synthesis reaction /  

accumulation of alkylene oxide

▪ Decomposition of raw materials, 

intermediates and products (liquid and 

gaseous)

▪ EO decomposition also in absence of 

oxygen

▪ Flammable and toxic gases (EO and 

decomposition gases)

Main hazards to be safeguarded
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Thermal

~600 J/g

445°C
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Examples of incidents with alkoxylation reactions 
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BASF Polyol Plant, Geismar, USA

Mai 24, 1976

Runaway with subsequent thermal 

decomposition

IQOXE EO & derivatives plant,

Tarragona, Spain - January 14, 2020

Under investigation
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Controlling the runaway and exothermic decomposition

5 13.09.2022

Gygax, R., Chemical reaction engineering for safety, Chemical Engineering 

Science, 1988. 43(8): p. 1759-1771.

TR Reaction temperature

MTSR Maximum temperature of the synthesis reaction

Tad Adiabatic temperature rise

TMRad Time to maximum rate at adiabatic conditions

ADT24 Adiabatic decomposition temperature for an 

adiabatic induction time of 24 hours 

= Temperature, at which the TMR equals 24 h

= Limiting factor in the safety model

1Technische Regel für Anlagensicherheit 410

Derivation of maximum allowed temperature (after runaway) according to the 

scenario of a cooling failure by Gygax and recommendations of TRAS 4101

Runaway

Decomposition
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Thermal stability of polyether polyols
Methods for quantitative assessment

Calorimetric methods for the study of decomposition 
reactions and determination of the ADT24

◼ Differential Scanning Calorimetry (DSC)

◼ Calvet calorimetry

◼ Adiabatic calorimetry – preferred option

◼ Use of a formal kinetic model describing the 
decomposition reaction
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Classification of polyether polyols 
decomposition

catalytic

slow
ሶ𝑄𝑅 < 1,5𝑊/𝑘𝑔

fast
ሶ𝑄𝑅 > 5𝑊/𝑘𝑔

thermal

slow
ሶ𝑄𝑅 < 1,5𝑊/𝑘𝑔

fast
ሶ𝑄𝑅 > 5𝑊/𝑘𝑔

To1 = 195°C To2 = 310°C

Catalytic

Q1 = 140 J/g

Thermal

Q2 > 370 J/g

Thermal stability of polyether polyols
Two-step decomposition at alkaline conditions

18/0780

Catalytic / slow-fast

Thermal / slow

7 13.09.2022

➢ The most precise assessment is possible by

adiabatic calorimetry

➢ Derivation of the ADT24 which is used as a limiting

factor in the safety model

Salg, BASF SE



Thermal stability of polyether polyols
Characteristics of the decomposition reaction

◼ Decomposition energy of polyether polyols ~= 900 J/g

◼ ADT24 ~= 200 °C – 250 °C, in some cases even smaller than 200 °C

◼ In alkaline conditions, decomposition may become more severe and may present autocatalytic behavior

◼ ADT24 needs to be determined for the most instable composition (raw materials including catalysts, intermediates or 
final products)

◼ Prevention: Maximum temperature of synthesis reaction MTSR ≤ ADT24 in combination with additional countermeasures

◼ Effective countermeasures depend on process design and include for example emergency cooling, ambient cooling, 
drainage systems

◼ Pressure relief is not sufficient as thermal decomposition may continue despite gas removal

◼ Decomposition leads to formation of flammable gases (additional risk, relevant e. g. for pressure relief)
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Gas phase decomposition of alkylene oxide
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◼ Gas phase: potentially ignitable alkylene oxide-oxygen-mixture

◼ Low oxygen content in the reactor due to vacuum before inerting
with N2

 PO/BuO-O2-mixtures out of the explosive range at typical 
process conditions

 EO-O2-mixture: hazard of exceeding the limiting stability 
concentration (LSC)

◼ Specification of the maximum permissible partial pressure EO

◼ Protection against gas phase decomposition of EO by Fath-
equation:

𝑝𝐹𝑎𝑡ℎ = 𝑓 𝑝𝑁2 , 𝑇, …

EO: ethylene oxide

PO: propylene oxide

BuO: butylene oxide

Askar, E.: Experimentelle Bestimmung und Berechnung sicherheitstechnischer Kenngrößen

ethylenoxidhaltiger Gasphasen, BAM Berlin, 2012

Fuel      

Air      

Inert gas      

No UEL      

LEL      

LSC      

Decomposition

Combustion

Explosive range
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Alkoxylation – chemistry and hazards
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Model 

based

safety

concept
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Components

◼ Starter

◼ Catalyst

◼ Oxide

◼ Solvents

Oxide types

◼ Ethylene Oxide (EO)

◼ Propylene Oxide (PO)

◼ Butylene Oxide (BO)

12

Semi-batch process: pre-charge of raw 

materials and dosage of alkylene oxide

M

Alk.oxide

cooling

Safeguarding semi-batch reactors for alkoxylation
Components

13.09.2022 Salg, BASF SE



Safeguarding semi-batch reactors for alkoxylation
Challenges
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Non-Steady Process

Variables:

◼ fill level

◼ composition

◼ pressure

◼ temperature

◼ nitrogen initial pressure

◼ process steps

◼ thermal stability

◼ …

M

Alk.oxide

cooling

Salg, BASF SE
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Calculation of oxide accumulation during alkoxylation processes 
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AO concentration during oxide dosage

Max. pressure and temperature

during/after runaway

Runaway-Model

Solubility model w/ oxide (VLE)

N2 concentration prior to oxide dosage

Solubility model w/o oxide (VLE)

Input for model calculations

𝑚𝑜𝑥
𝑇

𝑚𝑆𝑡𝑎𝑟𝑡𝑒𝑟

𝑉𝑅𝑒𝑎𝑐𝑡𝑜𝑟𝑚𝑁2

𝑝

M

T p

F

F

Alk. oxide

Starter

Cooling

+ Sensitivities

mox ~ pox

pox = f(T, p, …)
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Calculation of oxide accumulation during alkoxylation processes 
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Summary – key factors of BASF‘s model-based safety concept
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▪ Ensure that reaction is running with sufficient reaction rate

➢ Minimum reaction temperature, sufficient mixing, catalyst quality

▪ Limitation of oxide accumulation to control potential runaway + subsequent 

decomposition of liquid phase as well as EO decomposition

➢ Maximum temperature of synthesis reaction MTSR ≤ ADT24

➢ Sufficient inertization, e.g. N2

➢ EO amount < limiting stability concentration

▪ Use of precise property & thermal stability data as well as correct 

description of vapor-liquid-equilibrium (VLE) in all phases of the process, 

respecting changes in composition of the reaction mixture

▪ Consideration of accuracy of sensors and measurement uncertainty

▪ Stable process design (prevention of oscillations)

▪ Proper design of pressure relief considering release of flammable gases / 

containment of toxic gases

▪ Sufficient quality/redundancy of SIL-functions according to risk matrix

▪ Use of a MOC system and risk analysis for changes in process or equipment

Salg, BASF SE
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