

The impact of the energy transition on process safety of ports

EPSC conference 2022

Open Simone van Dijk, Ido Pat-El September 2022

Speaker's introduction

Ido Pat-El MSc. Senior Technical Safety Specialist

- Green Hydrogen Inherent Safety Practice Joint Industry Project Risk Assessment Lead
- Hydrogen Safety Innovation Platform working group
- On/offshore oil & gas, chemical and nuclear safety projects

Simone C.A. van Dijk MSc. Leading professional External Safety

- Impact on energy transition on safety & environment in ports of Amsterdam and Rotterdam
- Integral accessibility study Port of Amsterdam
- Area process safety passport project Port of Amsterdam

linkedin.com/company/royal-haskoningdhv

@RHDHV

facebook.com/RoyalHaskoningDHV

2 The impact of the energy transition on the process safety of ports | September 2022

Consulting engineers dedicated to Enhancing Society Together

Who we are

We are independent international consulting engineers leading the way in sustainable development and innovation.

We take responsibility for having a positive impact on the world and we constantly challenge ourselves and others to develop sustainable solutions to local and global issues. Enhancing Society Together!

#44 in Engineering News-Record magazine's Top 225 International Design Firms list

6,000 colleagues working from 65 offices around the world on projects in 100+ countries

Examples of port projects

Port of Amsterdam

- Strategic area vision
- Integral port accessibility study (hazardous materials)
- Risk space study
- Electrolyzer QRA's

- Electrolyzer park
- Hydrogen pipeline studies
- QRA's new energy carriers
- Knowledge table on safety of new energy carriers

- Energy diversity studies
- Assist in development of infrastructure plan
- Investigate energy provisions solutions for decarbonization of the PLA fleet by 2040

The energy transition will have a fundamental impact on activities of ports and the associated HSE risks will have an impact on space allocation

Changes	
κ <u>β</u>	Hazards
€ C C C C C C C C C C C C C C C C C C C	Interaction and complexity processes
	Operations and emergency response

Topics

What is changing?

- What new hazards are introduced?
- How does this affect space allocation?
- Conclusions

Topics

What is changing?

What new hazards are introduced?

How does this affect space allocation?

Conclusions

Decarbonization drives the green transition of ports.

The impact of the energy transition on the process safety of ports | September 2022

Royal HaskoningDHV Entwork Society Rejetive

> The new energy landscape Impact on and implications for European ports

Impact of energy transition on energy infrastructure

Limited number of market parties

Hierarchy and one-directional supply Demand is leading and supply is predictable Consistency has value Everyone is a market party (prosumers) Distributed and bi-directional Weather and seasonal variations determine supply Consistency & flexibility has value

The most relevant changes applicable to ports

- Fuel switch of maritime transport: maritime diesel replaced by e,g ammonia, methanol, biofuels, synthetic fuels.
- Electrification of port equipment
- Hydrogen as feedstock and energy vector
- Renewable power generation in the port areas
- Large scale import of hydrogen carriers as renewable energy resources
- Energy system integration
- Offshore wind integration
- Carbon capture and storage, e.g.
- Changes in hazards that will require to be managed

Topics

What is changing?

What new hazards are introduced?

How does this affect space allocation?

Conclusions

Change in property of substances results in changes in hazards while at same time new innovative techniques requires emerging risk to be managed

- Import of non-fossil energy fuels and new energy carriers, such as hydrogen, ammonia, methanol
- Large scale conversion technologies expected to get an increasing presence in ports
- New initiatives and changes in production processes such as production of synthetic fuels in some ports

Figure: Artist impression of a GigaWatt scale electrolyser (RHDHV, 2022, source)

Import of hydrogen and ammonia's will require a re-evaluation of the hazards at port sites due to a change in substance properties

- Hydrogen explosion severity in confined and congested geometries point of concern
- Ammonia toxicity introduces a new hazard compared to existing fuels

The toxicity of ammonia will result in an increase in safety distances compared to other fuels and require fit-for-purpose solutions

From Ref.2 DNV GL, RH2INE Sub-study Guidance for Safety Distances, 2022

New conversion technologies and the scale at which these are being introduced pose new safety challenges

Important examples:

Technology	Challenge	
(Green) hydrogen electrolyzers		 Little operation experience with large scale production Quantification of fire and explosion risks
Ammonia cracking to produce hydrogen, storage, transport	Ż	 Lack of industry experience in large scale cracking How to deal with toxic risks near urban areas and occupied buildings
Electrification		 Increase in large scale battery storage with new fire hazards
The impact of the energy transition on the process safe	ety of ports September 2022	Roval HaskoningDHV

The ports will change from transport and storage of fossil fuels to becoming a production and conversion facility of renewable energy. The interaction and complexity with neighboring Industries will increase

- Interaction with neighboring industry will become more the norm to increase energy efficiency.
- This will lead to increased complexity of processes, technically as well as from communication perspective
- Ports as hubs for CCS, e.g. Porthos
- The development of additional hydrogen pipelines to connects ports via the European hydrogen backbone
- Transition period in which both "old" en "new" technologies will operate concurrently

What is changing?

What new hazards are introduced?

How does this affect space allocation?

Conclusions

Personal risk and attention areas for fire, explosion and toxic clouds

The impact of the energy transition on the process safety of ports | September 2022

How does this effect space allocation?

The impact of the energy transition on the

Recommendation: More 'risk space' needed

- More 'risk space' needed, should be part of the strategic vision of the ports
- Proper consideration of group risk and attention zones
- Short term vision
 - Review how new technologies and activities might impact occupied areas
 - Consider this in space allocation and assess what additional mitigating measures are needed
 - Take into account that due to uncertainties surrounding new large-scale technologies that adequate safety margins will need to be taken into account.
 - Assess impact on emergency response
- Long term strategic vision:
 - Consider zoning of the ports in which similar activities are clustered
 - Each zone will have a characteristic set of activities which are allowed within that zone
 - High risk activities separated from high occupancy activities

What is changing?

What new hazards are introduced?

How does this affect space allocation?

Conclusions

Conclusions

- The energy transition will have a fundamental impact on activities of ports and the associated HSE risks will have an impact on space allocation.
- Now is the time to develop a strategic vision on the ports of the future which plays a crucial role in the global renewable energy system.

The impact of the energy transition on process safety of ports

EPSC conference 2022

Open Simone van Dijk, Ido Pat-El September 2022

References

[1] RHDHV, The New Energy Landscape, European Sea Ports Organisation
(ESPO) and European Federation of Inland Ports (EFIP), May 2022
[2] DNV GL, RH2INE Sub-study 1b SuAc A3&B3 Guidance for Safety Distances Final Report, Rev1, 2022