Chemical Hazard Assessment Know your Chemical Hazards

Dr. Ir. Bob van Woezik MTD DSM Corporate Process Safety Expert Bob.Woezik-van@DSM.com

European Conference on Plant & Process Safety September 13 - 14, 2022 Antwerp, Belgium

Bob van Woezik

- Nationality:
- Marital status: Married, 3 boys

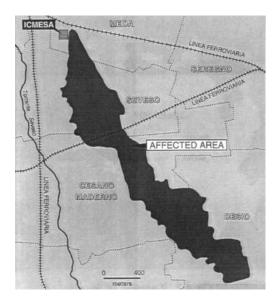
Dutch

- Education: Chemical Process Engineer (MSc, MTD, PhD)

1999 AkzoNobel, a global manufacturer of e.g. Chelates, Micronutrients, Organic peroxides, Metal alkyls Functions: Process Engineer; Maintenance & Project manager; SHEQS manager; BG Process Safety program manager

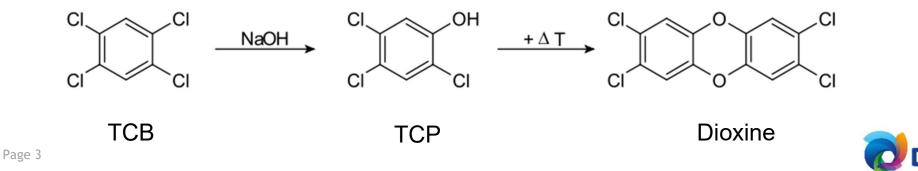
2015 OCI Fertilizers, a global manufacturer of e.g. Methanol, Ammonia, Nitric Acid, Ammonium Nitrate Function: Corporate Process Safety & Occupational safety

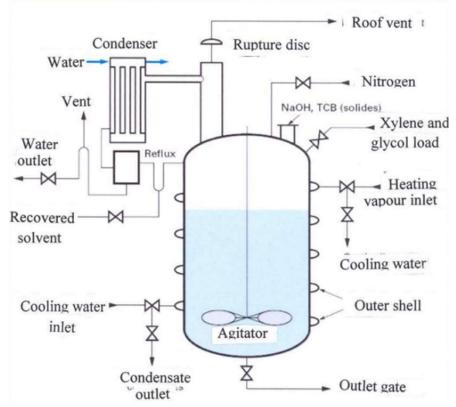
2018 DSM Operations & Responsible Care Function: Corporate senior expert Process Safety PS lead DSM Premix sites, Expert Chemical Hazard Assessments, Explosion Safety and protection Page 1



Seveso - the consequences

- 10th July 1976, Icmesa chemical company
- Discharge of highly toxic dioxin from a bursting disk
- No one killed
- 250 people developed skin disease and land contaminated, many animals killed
- Seveso directive

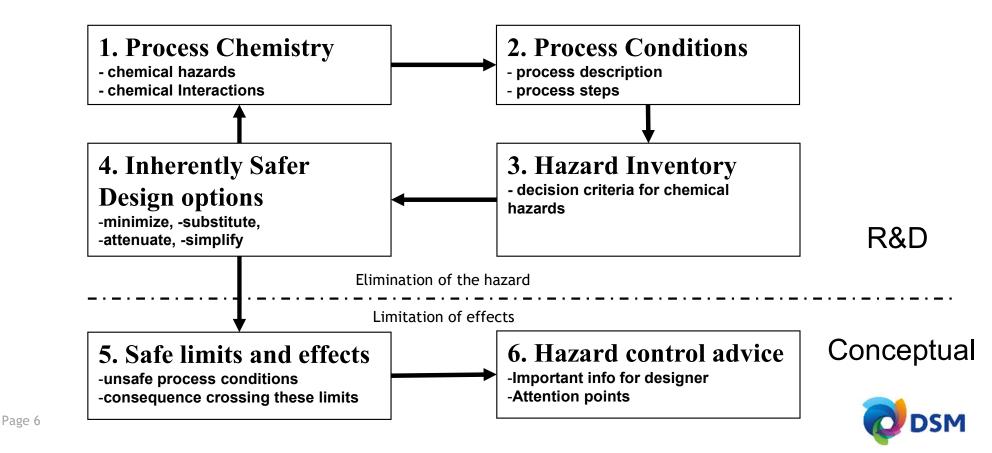



Seveso - the chemistry

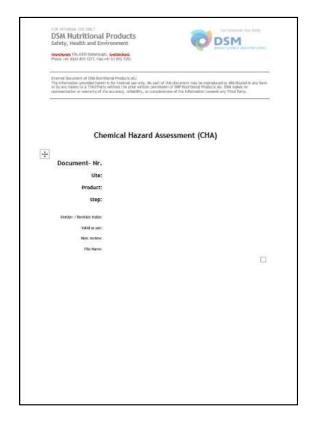
- Batch for the manufacture of 2,4,5-trichlorophenol. Temperature 140 170°C
- The company was aware of the hazardous characteristics of the main reaction. But did not foresee that a runaway could be triggered
- Post incident: Identified an exothermic decomposition ca. 250°C
- At high temperature 2,3,7,8-tetrachlorodibenzodioxin is formed (LD50 rat 0.02 mg/kg, TLV 1.0 * 10⁻⁸ mg/m³, carcinogenic and persistent)

Seveso - the process

- Shut-down for the weekend (Italian law).
 Batch not finished, never stopped at this stage.
 158°C last T measured
- 7 hours after shut-down, the runaway happened which released the reactor content
- The exothermic decomposition was initiated at 200 - 250°C and the reactor temperature increased uncontrolled to 450 - 500 °C
- To understand the chemical reaction behavior a Chemical Hazard Assessment is needed
 Page 4


Purpose of a Chemical Hazard Assessment

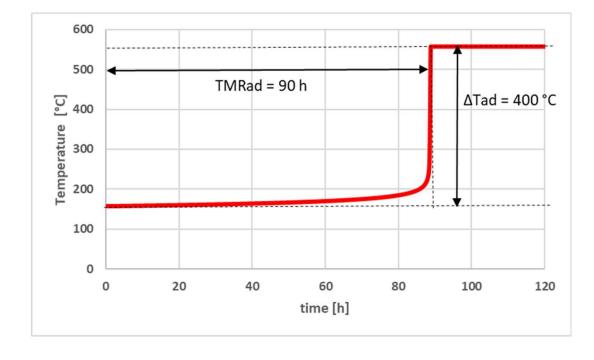
- CHA is a systematic approach to define the chemically related hazards of a process and its substances
- To challenge the process route and substances at an early stage
 - eliminating inherent chemical hazards
 - limiting of effects of remaining chemical hazards
- Documenting chemical hazard knowledge, used for design, operations, Management of Change


CHA is a fundamental document for process safety

Chemical Hazard Assessment steps

CHA report

Table of Content


1	1 Summary of the main hazards				
	Proc 2.1 2.2	cess Information Block flow diagram Process description	5		
	Che 3.1 3.2 3.3 3.4 3.5 3.6	mical Hazards. Physical properties data Thermal stability data Flammability of gases and vapors data Flammability of powders data Toxicity data Environmental data	6 7 8 9 10		
-	Con 4.1 4.2 4.3	npatibility. Chemical interactions matrix (make use of Cameo chemicals) Interaction with utilities Interaction with the material of construction	12 13		
	Rea 5.1 5.2 5.3 5.4	ctivity Brief information of the intended reaction Characteristics of the intended reaction Characteristics of the decomposition reaction Characteristics of decomposition reaction (not related to synthesis)			
6	Haz	ard Inventory			
7	7 Inherently Safer Design				
8	8 Safe Limits and Effects				

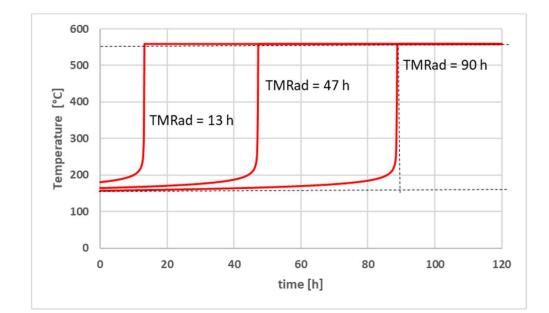
💋 DSM

Unintended Decomposition reaction

Characterization of the decomposition reaction:

- Adiabatic temperature rise: consequence
- Time to maximum rate: probability

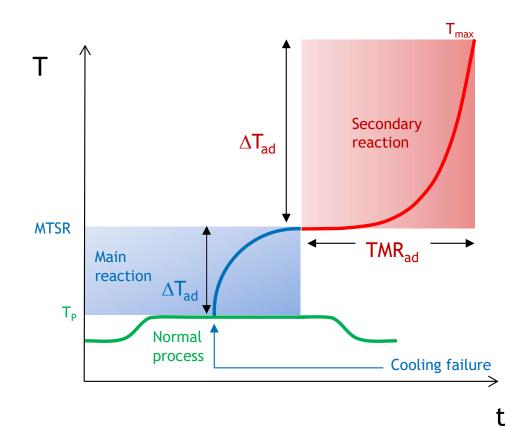
 $\Delta T_{ad} = \frac{c \cdot \Delta H_r}{\rho \cdot c'_p}$ $TMR_{ad} = \frac{c'_p \cdot R \cdot T_0^2}{q'_{(T_0)} \cdot E}$



Unintended Decomposition reaction

Decomposition reactions are sensitive to temperature.

Evaluate TMRad at:


- Normal Process Temperature
- Maximum process temperature (MTSR)
- Maximum utilities temperature (steam temperature)

TMRad for 180 °C, 165 °C, 158 °C

Cooling Failure Scenario

- Normal Process Temperature
- ΔTad synthesis reaction
- MTSR
- ΔTad decomposition reaction
- Tmax
- TMRad

Risk Diagram Criteria

Criteria	Consequence	Criteria	Probability
Low	∆T _{ad} <50°C and no pressure	Low	TMR _{ad} > 24h
Medium	50°C<∆T _{ad} <200°C	Medium	8h <tmr<sub>ad<24h</tmr<sub>
High	ΔT_{ad} >200 ° C	High	8h > TMR _{ad}

NB. Probability Criteria are for reactions/reactors, not for storage, transport etc.

Page 11

More details see: Thermal Safety of Chemical Processes by Francis Stoessel

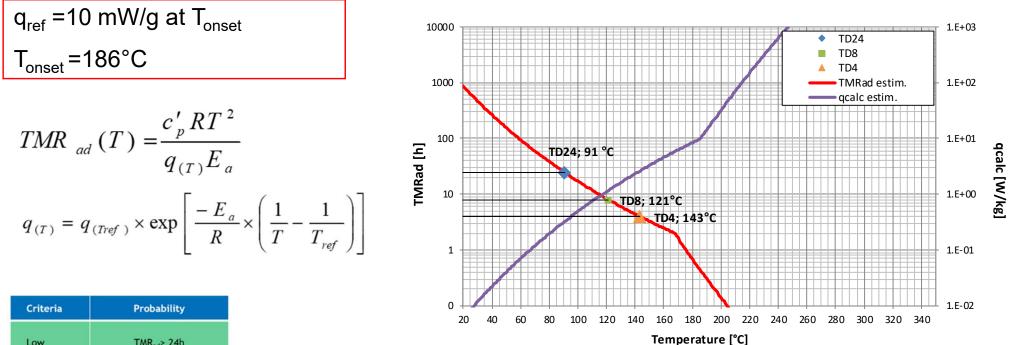
Measurements

Screening tests for unintended decomposition reactions following KISS-Principle: Keep It Simple and Safe

- Differential scanning calorimetry DSC
- Calvet Calorimeter C80
- Thermo-kinetics software AKTS

- Small samples 50 mg 1 g
- Fast screening
- Low costs

Screening Tests



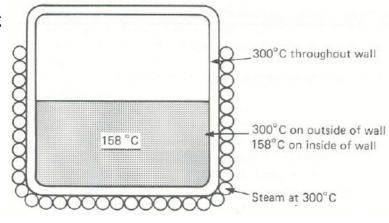
Total heat = 480 J/g Δ Tad = 269 °C

Criteria	Consequence		
Low	$\Delta T_{ad}^{<}50^{\circ}C$ and no pressure		
Medium	50°C<∆T _{ad} <200°C		
High	ΔT_{ad} >200°C		

Estimation of the TMR

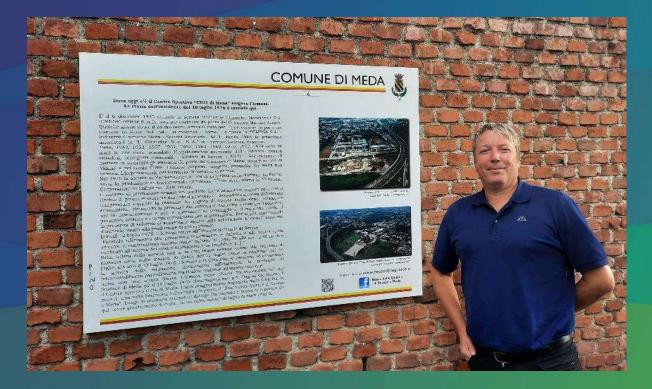
Criteria	Probability		
Low	TMR _{ad} > 24h		
Medium	8h <tmr<sub>ad<24h</tmr<sub>		
High	8h > TMR _{ad}		

Concluding: Safe Limits & Effects


Effects: Δ Tad decomposition = 400°C. Consequence is high: pressure build up by evaporation and/or reaction gas, and very fast decomposition. Effects: Tmax = 558°C, Pmax >> 30 bar

Safe Limits: TMRad is 24 h for 212°C and 8 h for 238 °C -Normal process Temperature 158 °C : TMRad = 90 h Low probability to trigger decomposition at 158 °C

-Maximum utilities Temperature: steam of 300°C! High probability in case of failure heating system. To be reviewed during HAZOP.


A leaking steam valve initiated the release of Seveso Page 15

Criteria	Consequence	Probability
Low	$\Delta T_{ad}^{<}50^{\circ}C$ and no pressure	TMR _{ad} > 24h
Medium	$50^{\circ}C<\Delta T_{ad}<200^{\circ}C$	8h <tmr<sub>ad<24h</tmr<sub>
High	∆T _{ad} >200°C	8h > TMR _{ad}

Questions

Bob.Woezik-van@DSM.com

