Effective HAZOP execution & HAZOP Typicals

Antwerp Sept 2022 – Tijs Koerts (EPSC)

EPSC Work Group HAZOP Efficiency

HAZOP remains important HAZOP execution is a competency Gaining 50% time

≻ Team

- ➢ Rhythm
- ≻Node
- Consequence
- Recommendation
- ≻Knowledge
- Documentation

>HAZOP execution is a skill

Experience & Competency (HAZOP is not a training)
 Small team: Operation, Process & Design, Maintenance

Rhythm in the HAZOP process

Only talk about: <u>cause</u> – <u>consequence</u> – <u>barriers</u>
 Stick together as team while discussing these

Consequence

- Nobody knows what will happen
- Do not discuss process upset details
 Focus on LOPC.
- Consequence of an LOC are often difficult to estimate, just mention the event class (C, D or E event). (LWC, Fatality, Catastrophe)
- Eventually be conservative and do a calculation later (e.g. in cases where the measures become very expensive).

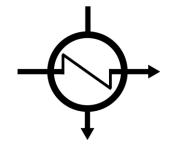
➤ What is a node?

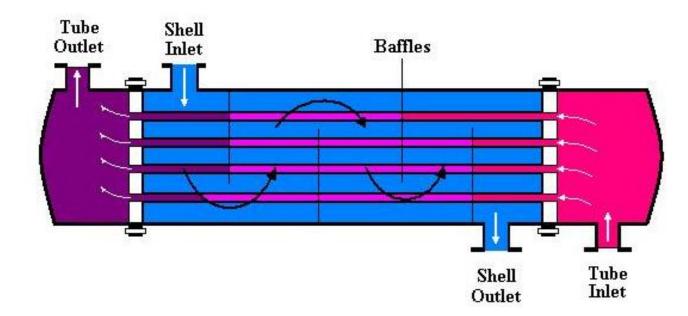
➤ <u>Cause</u> is in the node; <u>Consequence</u> can be anywhere

Effective checklists – suitable for the unit

Recommendation

➢ Do we lack safety? → Yes/No
➢ Not Designing the solution



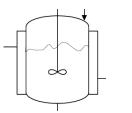

Knowledge increases efficiency

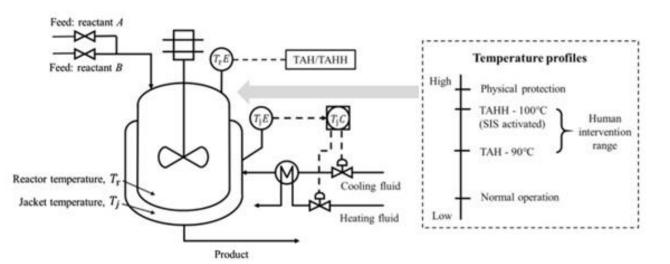
➢ Reading the P&ID
 ➢ Understand main scenarios of equipment → HAZOP Typicals
 ➢ Failure frequencies (likelihood , LOPA)

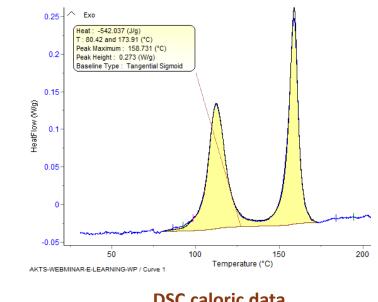
Heat Exchanger

Scenarios to consider

- > Tube leak small (corrosion pinhole) \rightarrow contamination \rightarrow ...
- > Full tube rupture (low probability ¹) \rightarrow Pressure exchange
- \succ "Blocked in" at start-up → high pressure
- ➢ Fouling & corrosion
- Large temperature exceedance due to control loop failure


¹ This is a low frequency scenario when leak before rupture with detection, or good design

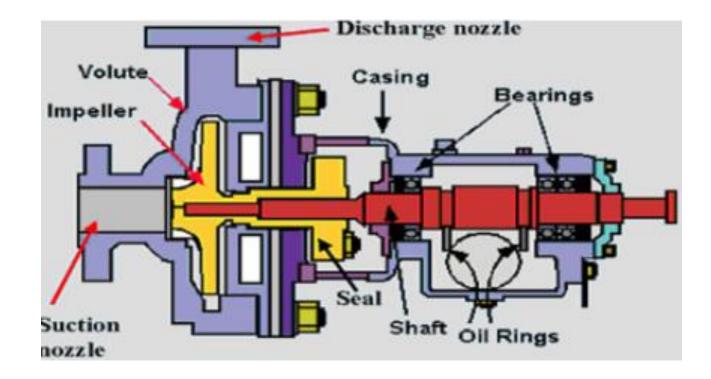

Measures to consider


- Detection (e.g. HC detector at the cooling tower)
- Pressure protection low pressure side (PSV)
- TRV to release liquid
- Cooling water / Boiler water control
- Robust design allowing temperature deviations

Batch Reactor

DSC caloric data

Scenarios to consider


- \blacktriangleright Reaction heat not absorbed \rightarrow run away \rightarrow explosion (know the energy balance / DSC data)
- \blacktriangleright Wrong chemical added \rightarrow severe unexpected reaction
- \blacktriangleright Mixing not working \rightarrow stratification \rightarrow sudden reaction
- \blacktriangleright Temperature deviation \rightarrow unknown exothermic reaction
- > Fouling of cooling system

Measures to consider

Temp control, back-up cooling, depressurization, over pressure protection e.g. rupture disc, eventually a bunker Chemical matrix, Materials identification Alarm & procedures (see also above) Chemical analysis, including DSC (see picture) Temperature alarm / trip, emergency procedure, back-up cooling

Centrifugal pump

Scenarios to consider

- \succ Low flow / suction blocked \rightarrow Cavitation \rightarrow Seal damage & leak
- \succ Bearing damage \rightarrow vibrations \rightarrow seal leakage and worse
- ➢ Discharge blocked → overheated product → leakage → fire

Measures to consider

Low flow alarm, second containment, gas detection Shaft position control, vibration analysis, operator rounds second containment, gas detection

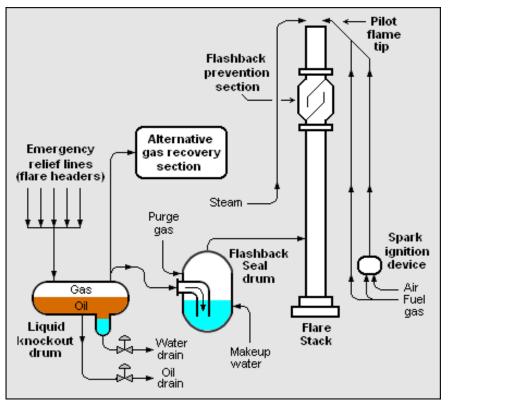
Package Unit – Vendor package

Some Examples

- Nitrogen storage and gas supply
- Ammonia cooling unit
- Compressor
- Dosing system
- Auxiliaries: hot oil / steam
- Water treatment
- Boiler / Heater

<u>Aspects</u>

- $\,\circ\,$ Is the potential hazard identified (chemical releases)?
- Is a Recognized Design applied (e.g. according a standard)?
- o Has a HAZOP been performed by the vendor?
- $\,\circ\,$ Are the IPL's identified and maintained?
- Is a P&ID available, is maintenance responsibility defined, are SOP available for operation?
- $\circ\,$ Is the vendor a recognized specialist?
- Validate interface: flow, pressure, temperature exchanges bringing equipment out of design
- Consider to invite the vendor to do a joined HAZOP to clarify residual hazards (depending on complexity and severity of potential consequence)
- Spot check on HAZOP of the vendor
- Is the protection of the Package Unit appropriate vs the hazard of the process unit



Flare System

Scenarios to consider

- ➢ No flame in pilots → unburned gases released
- ➢ Flame burning inside the tip → loss/failure of tip
- Blocked flow to flare (high level in the drum, flare lines)
- Internal explosion
- → Liquid carry over → Burning liquid falling from flare

Rust can block the pilot burner

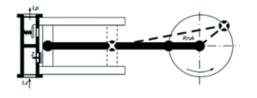
Tip damage due to internal explosion

Tip damage due to flame inside of the tip

Measures to consider

Have a redundant pilot gas feed (e.g. gas bottles), Multiple flame detection to validate the pilot

Verify the purge gas feed


Level control in KO drum and seal drum, Pressure alarm blockage in in the flare line; inspection and cleaning of flare line; keep flare piping free from valves etc.

Purge gas to avoid backflow of air; water lock to avoid back flow

Level control in KO drum and seal drum

Compressor

Scenarios to consider

- Liquid in compressor due to high level in separators or KO drum down the compressor
- \succ Loss of cooling (between stages) \rightarrow overheating
- ➢ Vibration → moving equipment → fatigue checks
- ➤ Loss of purge gas → High concentration in vent lines Nitrogen

Topics to consider

KO drums level switch to detect liquid; Vibration monitoring to shut

- Temperature switches to stop the compressor
- Pulsation dampeners; Compensators; fixation of piping; Operator
- Flow switch that stops the compressor; backflow protection to the

Storage tank

Tank type depends on the product

Scenarios to consider

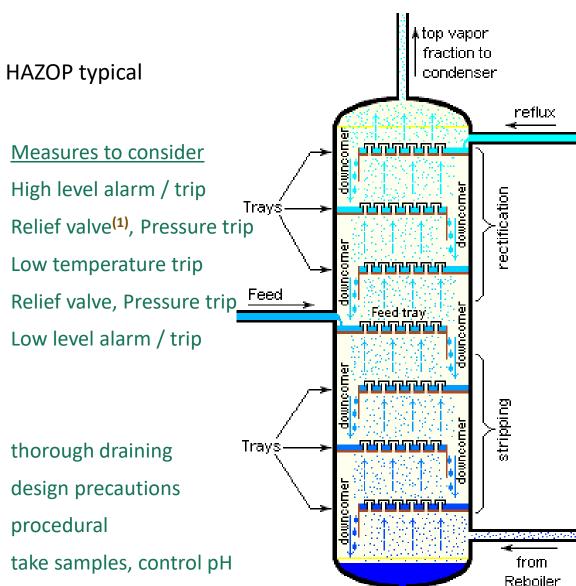
- ➢ Overflow → Fire or explosion
- ≻ Low level \rightarrow no outlet flow
- ➢ Low level → roof landing on legs → air in the tank
- ➢ Rim seal damage → Gas feed to floating roof → fire
- Over/under pressure
- ➢ High temp → evaporation of the product → release
- Low conductive liquids generate a static spark

Measures to consider

Automatic overfill protection (for hazardous materials)
Protection of mixers, heating coils and pumps
Alarms & Procedures
Leakage detection (IR/gas); Tank preventive maintenance
PVV, see https://www.icheme.org/media/9850/xix-paper-63.pdf
Temperature alarm; Emergency cooling
Grounding; Filling at low speed

EPS

Distillation Column


Scenarios to consider (generic, mandatory)

> Overfilling

- > Loss of Reflux e. g. due to reflux drum overfill, condenser failure
- Light components in bottoms sent to (floating roof) tank
- \succ Feed composition (too light) \rightarrow High flow / pressure in the top
- > Low level in the bottoms, i.e. vapor breakthrough to tank

Scenarios to consider (special, optional if appropriate)

- Water ingress into hot columns (steam explosion)
- Formation of popcorn polymer (1,3-Butadiene)
- Vacuum after steam out / upsets
- Caustic stress corrosion cracking
- > Hydrate formation (LNG, C2) in cold columns
- \succ High temperature \rightarrow decomposition / detonation

to Reboiler

⁽¹⁾ Relief Valve size calculation based on energy balance of column, condenser & reboiler

drying, take samples

design precautions

Acknowledgement:

EPSC WG HAZOP effectiveness led by Margit Hahn (Evonik)
Sugroup HAZOP execution members
≻Hubertus Siegel (Ingineur Bureau)
≻Ron Stockfleth (Shell)
≻Kirsi Hietanen (Neste)

Thank you for your attention

Questions?

