

REMBE® - Your Specialist for

Explosion Safety Concepts

Pressure Relief Solutions

Our Route to You!

- 01 REMBE® América Latina Ltda. | Curitiba, Brazil
- 02 REMBE® Asia Pacific Pte. Ltd. | Singapore
- 03 REMBE® Bangkok Ltd. | Bangkok, Thailand
- 04 REMBE® China Ltd. | Shanghai, China
- 05 REMBE® GmbH Safety+Control | Brilon, Germany
- 06 REMBE® GmbH Safety+Control (DMCC Branch)

Dubai, United Arab Emirates

- 07 REMBE® Inc. | Fort Mill, SC, USA
- 08 REMBE® K.K. | Yokohama, Japan
- 09 REMBE® Oy | Helsinki, Finland
- 10 REMBE® S.r.I. | Milan, Italy
- 11 REMBE® ZA | Boksburg, South Africa

REMBE® Alliance

REMBE® GmbH Safety+Control

REMBE® Kersting GmbH

REMBE® Fibre Force GmbH

REMBE® Research+Technology Center GmbH

REMBE® Advanced Services+Solutions GmbH

Active participation on improving industrial safety standards.

Member of international standardisation boards and committees

VDMA | German Engineering Federation
CEN | Committee European for Norms
NFPA | National Fire Protection Association
IND EX® | International Association of
Experts for Industrial Explosion Protection
CSE Institute | Center of Safety Excellence
VDI | Association of German Engineers
VDSI | Association for Safety, Health and
Environmental Protection at Work
EHEDG | European Hygienic Engineering &
Design Group

IFF | International Research Institute of Feed Technology

vfdb | German Fire Protection Association

MHEA | Materials Handling Engineers Association FSA | Farm Service Agency of US Department of Agriculture

USDA | United States Department of Agriculture DSIV | German Association of Bulk Industries DIERS | Design Institute for Emergency Relief Systems

EIC | Energy Industries Council

VGB PowerTech | European technical association for power and heat generation WJI | Wilhelm Jost Institute for physical and chemical engineering

ESMG | European Safety Management Group **DMRC** | Direct Manufacturing Research Center



REMBE® and Renewables?

Process diagram

Position rupture disc DN 100

Turbocharger

System specifications:

Temperature = 550 °C

Initial pressure = 5.5 barg

Vessel strength = 18 barg

Load = cyclic

Vibrations = Yes

Cylinder

Turbocharger

Adding H₂ to the intake manifold in front of the cylinder head

Position rupture disc DN 100

Challenge

Changing over from methane to hydrogen operation

		Methane	Hydrogen
LEL	Vol-%	4.4	4.0
UEL	Vol-%	17.0	77.0
LOC	Vol-%	9.9	4.3
MIE	mJ	0.23	0.017
Calorific value	/ kWh/kg	13,9	33,3
Calorific value	/ kWh/m³	9,94	3,00
Stoichiometry	/ Vol %	9,46	29,55
Flame temperature	/°C	1970	2130
K _G	/ bar m s ⁻¹	68,4	>550
max. lam. flame speed	/ cm s ⁻¹	43	346
max. expl. pressure	/ bai	8,2	8

- Mixture composition and precompression influence energy content significantly!
- Much faster pressure rise expected.
- Stronger tendency towards detonative transition
- **Explosion under pre-compression!**

Finding: No secured design parameters!

Challenge

Summery of identified issues

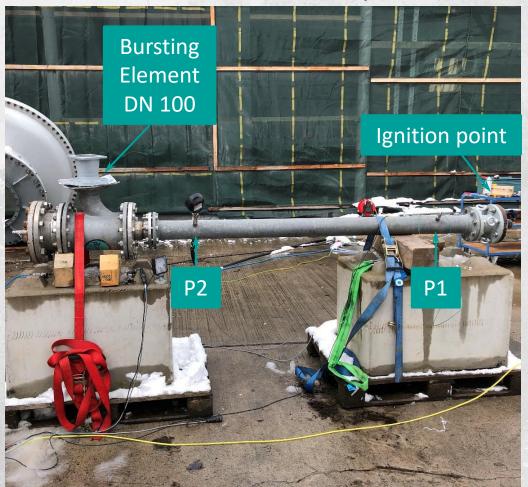
- How does the system react, including pressure relief devices?
- There is currently no "valid" normative basis for gas explosions under pre-compression.
- DIN EN 14994 so far only provides for atmospheric conditions. (The group is working on 3 different new models here.)
- How does the geometry affect the flame speed? →DDT
- → Extremely dynamic system

Question: Under what conditions can the system be operated with the existing safety concept?

Approach: Experimental validation of the protection concept!

REMBE® RTC

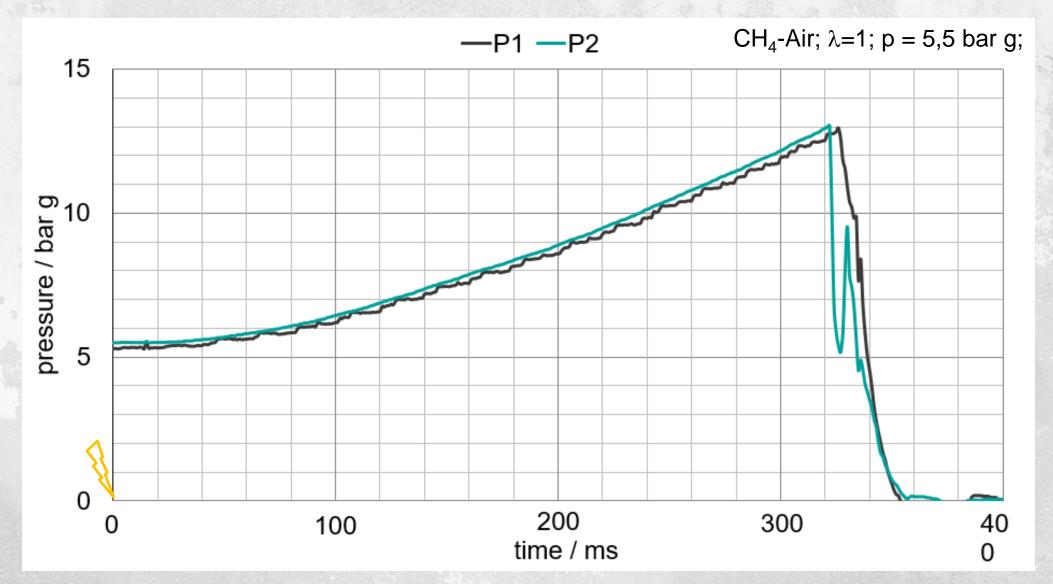
Centre for explosion testing and battery safety Accreditation in acc. with DIN EN ISO / IEC 17025:2018

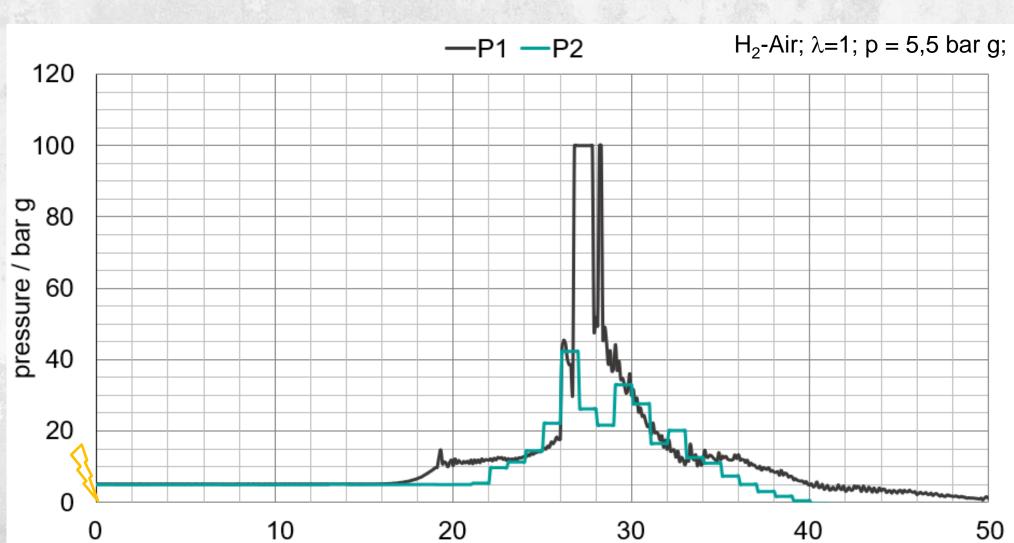

RTC offers large scale:

- Explosion testing
- Fire tests
- Test on electrical (arc-) fault events
- Pressure testing
- Li-lon testing
- Functional safety studies

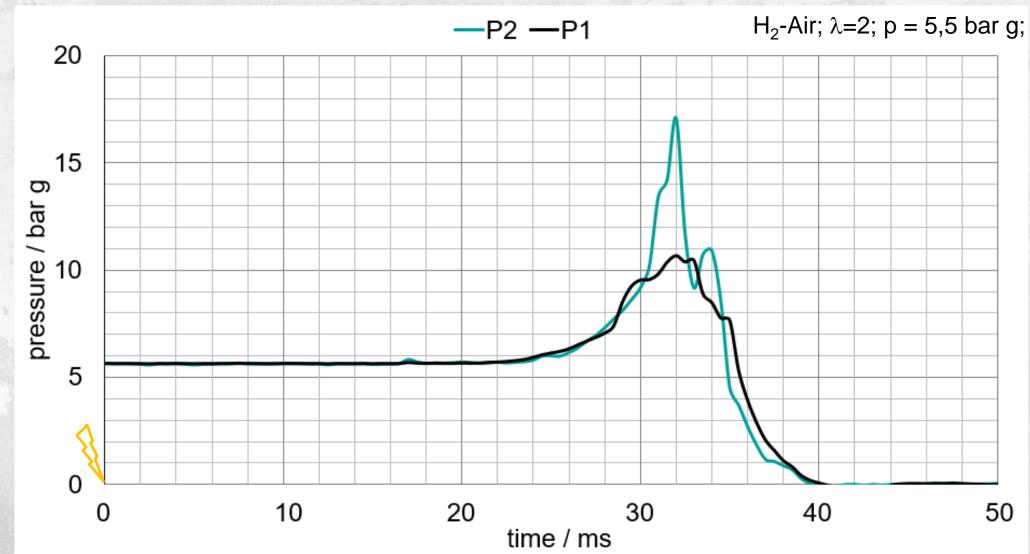
Approach

Experimental validation of the safety concept




Validation $p_{red} < p_{max}$

- Geometric reproduction of the exhaust section
- Volume, I/D and RD position close to reality
- Reference experiment CH₄
- Try different mixtures of H₂-Air to find safe working conditions
- Static ignition
- → Goal: Determination p_{red}


Video of the Experiment

time / ms

Validation Results

Expected finding:

Do not carelessly substitute / blend CH₄ with H₂!

- $\lambda = 1$ cannot be realised with the present relief concept.
- Maximum pressure clearly exceeded, indications of starting or ongoing detonation
- For $\lambda > 2$, p_{max} is acceptable; Recommendation: Operation at $\lambda = 3$
- Rupture discs suitable for relieving H₂ gas explosions.

Side-Topic: Is Flameless Venting possible for H₂-Air explosions?

→ The experiment proves that it is possible under certain boundary conditions. Especially valuable in the maritime sector.

Video of the Experiment

Video of the Experiment

No flames. No thermal damage to the indicators.

Summary & Conclusion

- "New" energy systems also bring "new" challenges in pressure relief.
- The dynamics of hydrogen explosions (especially under pre-pressure) are difficult to predict, even with experimental validation.
- Pressure relief via rupture discs works, even flameless.
- A wider awareness of the safety risks of these "new" technologies must be created.
- The normative bases / codes & standards must be improved, and more complex models must be set up.
- Safety aspects limit the application of hydrogen in the context of the energy transition.

David Rasche

Special Applications Process Safety T +49 2961 7405-143 M david.rasche@rembe.de

REMBE® GmbH Safety+Control
Gallbergweg 21 | 59929 Brilon, Germany
T +49 2961 7405-0
hello@rembe.de

Thank you for your Attention